High sensitive room temperature NO2 gas sensor based on the avalanche breakdown induced by Schottky junction in TiO2-Sn3O4 nanoheterojunctions

被引:25
作者
Chen, Duo [1 ,2 ]
Yu, Wencheng [1 ]
Wei, Lin [3 ]
Ni, Jiasheng [1 ]
Li, Hui [1 ]
Chen, Yanxue [2 ]
Tian, Yufeng [2 ]
Yan, Shishen [2 ]
Mei, Liangmo [2 ]
Jiao, Jun [4 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Int Sch Optoelect Engn, Jinan 250353, Peoples R China
[2] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[3] Shandong Univ, Sch Microelect, Jinan 250100, Peoples R China
[4] Portland State Univ, Dept Mech & Mat Engn, POB 751, Portland, OR 97207 USA
基金
中国国家自然科学基金;
关键词
TiO2-Sn3O4; nanostructure; Schottky contact; Avalanche breakdown; NO2; sensor; NANOBELT HETEROSTRUCTURES; PHOTODETECTOR; FOAM; SNO2;
D O I
10.1016/j.jallcom.2022.165079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel sensor based on Schottky junction inducing avalanche breakdown effect in TiO2-Sn3O4 nanoheterojunctions is assembled. High sensitivity for NO2 gas sensing is demonstrated at room temperature. TiO2- Sn3O4 nanocompositewas synthesized as the gas sensing layer and Schottky contact was formed by Au electrodes. The Schottky contact functions as a "gate " which can trigger the avalanche breakdown effect in the TiO2- Sn3O4 heterojunctions. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gas and the bias on the device, NO2 at a concentration from 5 to 50 ppm can be detected with an average response time of 8 s at room temperature. This nanostructured device is a promising candidate for application in high-sensitivity and high-speed NO2 gas sensor. The methodology and working principle illustrated in this paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. (C)& nbsp;2022 Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 35 条
[1]  
Batis Habib M.K., 2010, B SOC CHIM BELG, V99
[2]   Highly sensitive detection of NO2 gas using BGaN/GaN superlattice-based double Schottky junction sensors [J].
Bishop, C. ;
Salvestrini, J. P. ;
Halfaya, Y. ;
Sundaram, S. ;
El Gmili, Y. ;
Pradere, L. ;
Marteau, J. Y. ;
Assouar, M. B. ;
Voss, P. L. ;
Ougazzaden, A. .
APPLIED PHYSICS LETTERS, 2015, 106 (24) :1DUMMUY
[3]   Metrological characteristics of ZNO oxygen sensor at room temperature [J].
Chaabouni, F ;
Abaab, M ;
Rezig, B .
SENSORS AND ACTUATORS B-CHEMICAL, 2004, 100 (1-2) :200-204
[4]   Ag2S/ZnO core-shell nanoheterojunction for a self-powered solid-state photodetector with wide spectral response [J].
Chen, Duo ;
Wei, Lin ;
Wang, Dong ;
Chen, Yanxue ;
Tian, Yufeng ;
Yan, Shishen ;
Mei, Liangmo ;
Jiao, Jun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 :2491-2496
[5]   Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity [J].
Chen, Guohui ;
Ji, Shaozheng ;
Sang, Yuanhua ;
Chang, Sujie ;
Wang, Yana ;
Hao, Pin ;
Claverie, Jerome ;
Liu, Hong ;
Yu, Guangwei .
NANOSCALE, 2015, 7 (07) :3117-3125
[6]   A novel method for predicting optimal gas sensing temperature of morphologically distinct nanostructured Schottky interfaces [J].
Cheung, Ka Wai ;
Kuo, Wei Ting ;
Yu, Jerry ;
Ho, Derek .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 287 :468-475
[7]   Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity [J].
Choi, Young-Jin ;
Hwang, In-Sung ;
Park, Jae-Gwan ;
Choi, Kyoung Jin ;
Park, Jae-Hwan ;
Lee, Jong-Heun .
NANOTECHNOLOGY, 2008, 19 (09)
[8]   Decoration of CuO NWs Gas Sensor with ZnO NPs for Improving NO2 Sensing Characteristics [J].
Han, Tae-Hee ;
Bak, So-Young ;
Kim, Sangwoo ;
Lee, Se Hyeong ;
Han, Ye-Ji ;
Yi, Moonsuk .
SENSORS, 2021, 21 (06) :1-11
[9]   Bilayer Polyaniline-WO3 Thin-Film Sensors Sensitive to NO2 [J].
He, Weisi ;
Zhao, Yanhong ;
Xiong, Yuhua .
ACS OMEGA, 2020, 5 (17) :9744-9751
[10]   Necked ZnO nanoparticle-based NO2 sensors with high and fast response [J].
Jun, Jin Hyung ;
Yun, Junggwon ;
Cho, Kyoungah ;
Hwang, In-Sung ;
Lee, Jong-Heun ;
Kim, Sangsig .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (02) :412-417