In Silico Approach for the Definition of radiomiRNomic Signatures for Breast Cancer Differential Diagnosis

被引:19
作者
Gallivanone, Francesca [1 ]
Cava, Claudia [1 ]
Corsi, Fabio [2 ,3 ,4 ]
Bertoli, Gloria [1 ]
Castiglioni, Isabella [1 ,5 ]
机构
[1] CNR, IBFM, Natl Res Council, Inst Mol Bioimaging & Physiol, Via F Cervi 93, I-20090 Milan, Italy
[2] Ist Clin Sci Maugeri IRCCS, Lab Nanomed & Mol Imaging, Via Maugeri 4, I-27100 Pavia, Italy
[3] Univ Milan, Dept Biomed & Clin Sci L Sacco, Via GB Grassi 74, I-20157 Milan, Italy
[4] Ist Clin Sci Maugeri IRCCS, Surg Dept, Breast Unit, Via Maugeri 4, I-27100 Pavia, Italy
[5] Univ Milano Bicocca, Dept Phys Giuseppe Occhialini, I-20126 Milan, Italy
关键词
radiogenomics; RadiomiRNomics; breast cancer; magnetic resonance imaging; MRI; microRNAs; miRNAs; pathways; network; GENE-EXPRESSION; IMAGES; IDENTIFICATION; INFORMATION; RECURRENCE; PREDICTION; MIRNAS;
D O I
10.3390/ijms20235825
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Personalized medicine relies on the integration and consideration of specific characteristics of the patient, such as tumor phenotypic and genotypic profiling. Background: Radiogenomics aim to integrate phenotypes from tumor imaging data with genomic data to discover genetic mechanisms underlying tumor development and phenotype. Methods: We describe a computational approach that correlates phenotype from magnetic resonance imaging (MRI) of breast cancer (BC) lesions with microRNAs (miRNAs), mRNAs, and regulatory networks, developing a radiomiRNomic map. We validated our approach to the relationships between MRI and miRNA expression data derived from BC patients. We obtained 16 radiomic features quantifying the tumor phenotype. We integrated the features with miRNAs regulating a network of pathways specific for a distinct BC subtype. Results: We found six miRNAs correlated with imaging features in Luminal A (miR-1537, -205, -335, -337, -452, and -99a), seven miRNAs (miR-142, -155, -190, -190b, -1910, -3617, and -429) in HER2+, and two miRNAs (miR-135b and -365-2) in Basal subtype. We demonstrate that the combination of correlated miRNAs and imaging features have better classification power of Luminal A versus the different BC subtypes than using miRNAs or imaging alone. Conclusion: Our computational approach could be used to identify new radiomiRNomic profiles of multi-omics biomarkers for BC differential diagnosis and prognosis.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer [J].
Abdollahi, Hamid ;
Mofid, Bahram ;
Shiri, Isaac ;
Razzaghdoust, Abolfazl ;
Saadipoor, Afshin ;
Mahdavi, Arash ;
Galandooz, Hassan Maleki ;
Mahdavi, Seied Rabi .
RADIOLOGIA MEDICA, 2019, 124 (06) :555-567
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   [18F] FDG PET/CT features for the molecular characterization of primary breast tumors [J].
Antunovic, Lidija ;
Gallivanone, Francesca ;
Sollini, Martina ;
Sagona, Andrea ;
Invento, Alessandra ;
Manfrinato, Giulia ;
Kirienko, Margarita ;
Tinterri, Corrado ;
Chiti, Arturo ;
Castiglioni, Isabella .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (12) :1945-1954
[4]   C-Reactive Protein and Breast Cancer: New Insights from Old Molecule [J].
Asegaonkar, Shilpa Balaji ;
Asegaonkar, Balaji Narayanrao ;
Takalkar, Unmesh Vidyadhar ;
Advani, Suresh ;
Thorat, Anand Pandurang .
INTERNATIONAL JOURNAL OF BREAST CANCER, 2015, 2015
[5]   MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration [J].
Bertoli, Gloria ;
Cava, Claudia ;
Diceglie, Cecilia ;
Martelli, Cristina ;
Rizzo, Giampiero ;
Piccotti, Francesca ;
Ottobrini, Luisa ;
Castiglioni, Isabella .
BREAST CANCER RESEARCH AND TREATMENT, 2017, 161 (03) :605-616
[6]   The potential of miRNAs for diagnosis, treatment and monitoring of breast cancer [J].
Bertoli, Gloria ;
Cava, Claudia ;
Castiglioni, Isabella .
SCANDINAVIAN JOURNAL OF CLINICAL & LABORATORY INVESTIGATION, 2016, 76 :S34-S39
[7]   AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics [J].
Castiglioni, Isabella ;
Gallivanone, Francesca ;
Soda, Paolo ;
Avanzo, Michele ;
Stancanello, Joseph ;
Aiello, Marco ;
Interlenghi, Matteo ;
Salvatore, Marco .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2673-2699
[8]   Theranostic application of miR-429 in HER2+breast cancer [J].
Cava, Claudia ;
Novello, Chiara ;
Martelli, Cristina ;
Lodico, Alessia ;
Ottobrini, Luisa ;
Piccotti, Francesca ;
Truffi, Marta ;
Corsi, Fabio ;
Bertoli, Gloria ;
Castiglioni, Isabella .
THERANOSTICS, 2020, 10 (01) :50-61
[9]   How interacting pathways are regulated by miRNAs in breast cancer subtypes [J].
Cava, Claudia ;
Colaprico, Antonio ;
Bertoli, Gloria ;
Bontempi, Gianluca ;
Mauri, Giancarlo ;
Castiglioni, Isabella .
BMC BIOINFORMATICS, 2016, 17
[10]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057