Automatic Construction of Nonparametric Relational Regression Models for Multiple Time Series

被引:0
|
作者
Hwang, Yunseong [1 ,2 ]
Tong, Anh [1 ]
Choi, Jaesik [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Ulsan, South Korea
[2] NAVER Corp, Seongnam 13561, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian Processes (GPs) provide a general and analytically tractable way of modeling complex time-varying, nonparametric functions. The Automatic Bayesian Covariance Discovery (ABCD) system constructs natural-language description of time-series data by treating unknown time-series data nonparametrically using GP with a composite covariance kernel function. Unfortunately, learning a composite covariance kernel with a single time-series data set often results in less informative kernel that may not give qualitative, distinctive descriptions of data. We address this challenge by proposing two relational kernel learning methods which can model multiple time-series data sets by finding common, shared causes of changes. We show that the relational kernel learning methods find more accurate models for regression problems on several real-world data sets; US stock data, US house price index data and currency exchange rate data.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Nonparametric Test for Volatility in Clustered Multiple Time Series
    Erniel B. Barrios
    Paolo Victor T. Redondo
    Computational Economics, 2024, 63 : 861 - 876
  • [42] On nonparametric regression for bivariate circular long-memory time series
    Beran, Jan
    Steffens, Britta
    Ghosh, Sucharita
    STATISTICAL PAPERS, 2022, 63 (01) : 29 - 52
  • [43] On nonparametric regression for bivariate circular long-memory time series
    Jan Beran
    Britta Steffens
    Sucharita Ghosh
    Statistical Papers, 2022, 63 : 29 - 52
  • [44] On the asymptotic variance in nonparametric regression with fractional time-series errors
    Feng, Yuanhua
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (02) : 63 - 76
  • [45] Nonparametric Mixture of Regression Models
    Huang, Mian
    Li, Runze
    Wang, Shaoli
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 929 - 941
  • [46] Switching nonparametric regression models
    de Souza, Camila P. E.
    Heckman, Nancy E.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (04) : 617 - 637
  • [47] DEPENDENCE ANALYSIS OF REGRESSION MODELS IN TIME SERIES
    Xuanhe WANG
    Maochao XU
    Shengwang MENG
    Journal of Systems Science & Complexity, 2012, 25 (06) : 1136 - 1142
  • [48] Sequential estimation for time series regression models
    Shiohama, T
    Taniguchi, M
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 123 (02) : 295 - 312
  • [49] Regression models for binary time series with gaps
    Klingenberg, Bernhard
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 4076 - 4090
  • [50] Regression Models for Time Series with Increasing Seasonality
    David Madrigal Espinoza, Sergio
    COMPUTACION Y SISTEMAS, 2014, 18 (04): : 821 - 831