Automatic Construction of Nonparametric Relational Regression Models for Multiple Time Series

被引:0
|
作者
Hwang, Yunseong [1 ,2 ]
Tong, Anh [1 ]
Choi, Jaesik [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Ulsan, South Korea
[2] NAVER Corp, Seongnam 13561, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gaussian Processes (GPs) provide a general and analytically tractable way of modeling complex time-varying, nonparametric functions. The Automatic Bayesian Covariance Discovery (ABCD) system constructs natural-language description of time-series data by treating unknown time-series data nonparametrically using GP with a composite covariance kernel function. Unfortunately, learning a composite covariance kernel with a single time-series data set often results in less informative kernel that may not give qualitative, distinctive descriptions of data. We address this challenge by proposing two relational kernel learning methods which can model multiple time-series data sets by finding common, shared causes of changes. We show that the relational kernel learning methods find more accurate models for regression problems on several real-world data sets; US stock data, US house price index data and currency exchange rate data.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nonparametric models for functional data, with application in regression, time-series prediction and curve discrimination
    Ferraty, F
    Vieu, P
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 111 - 125
  • [22] NONPARAMETRIC ADDITIVE MODELS FOR PANELS OF TIME SERIES
    Mammen, Enno
    Stove, Bard
    Tjostheim, Dag
    ECONOMETRIC THEORY, 2009, 25 (02) : 442 - 481
  • [23] Delay times of sequential procedures for multiple time series regression models
    Aue, Alexander
    Horvath, Lajos
    Reimherr, Matthew L.
    JOURNAL OF ECONOMETRICS, 2009, 149 (02) : 174 - 190
  • [24] Iterated time series prediction with multiple support vector regression models
    Zhang, Li
    Zhou, Wei-Da
    Chang, Pei-Chann
    Yang, Ji-Wen
    Li, Fan-Zhang
    NEUROCOMPUTING, 2013, 99 : 411 - 422
  • [25] Adaptive wavelet series estimation in separable nonparametric regression models
    Umberto Amato
    Anestis Antoniadis
    Statistics and Computing, 2001, 11 : 373 - 394
  • [26] Adaptive wavelet series estimation in separable nonparametric regression models
    Amato, U
    Antoniadis, A
    STATISTICS AND COMPUTING, 2001, 11 (04) : 373 - 394
  • [27] Nonparametric Relational Models with Superrectangulation
    Nakano, Masahiro
    Kimura, Akisato
    Nishikimi, Ryo
    Yamada, Takeshi
    Fujiwara, Yasuhiro
    Ueda, Naonori
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [28] Nonparametric specification for non-stationary time series regression
    Zhou, Zhou
    BERNOULLI, 2014, 20 (01) : 78 - 108
  • [29] Nonparametric test for the form of parametric regression with time series errors
    Wang, Lan
    Van Keilegom, Ingrid
    STATISTICA SINICA, 2007, 17 (01) : 369 - 386
  • [30] Consistent estimation of a general nonparametric regression function in time series
    Linton, Oliver
    Sancetta, Alessio
    JOURNAL OF ECONOMETRICS, 2009, 152 (01) : 70 - 78