Viterbo conjecture for Zoll symmetric spaces

被引:13
作者
Shelukhin, Egor [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LAGRANGIAN SUBMANIFOLDS; SPECTRAL INVARIANTS; QUASI-MORPHISMS; FIXED-POINTS; SYMPLECTIC HYPERSURFACES; HAMILTONIAN-DYNAMICS; PERSISTENT HOMOLOGY; MATHEMATICAL-THEORY; HOLOMORPHIC-CURVES; PERIODIC-SOLUTIONS;
D O I
10.1007/s00222-022-01124-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Viterbo from 2007 on the existence of a uniform bound on the Lagrangian spectral norm of Hamiltonian deformations of the zero section in unit cotangent disk bundles, for bases given by compact rank one symmetric spaces S-n,RPn,CPn,HPn,n >= 1. We discuss generalizations and give applications, in particular to C0 symplectic topology. Our key method consists in a quantitative deformation argument for Floer persistence modules that allows to excise a divisor.
引用
收藏
页码:321 / 373
页数:53
相关论文
共 136 条
[41]   Stability of persistence diagrams [J].
Cohen-Steiner, David ;
Edelsbrunner, Herbert ;
Harer, John .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) :103-120
[42]   THE BIRKHOFF-LEWIS FIXED-POINT THEOREM AND A CONJECTURE OF ARNOLD,V.I. [J].
CONLEY, CC ;
ZEHNDER, E .
INVENTIONES MATHEMATICAE, 1983, 73 (01) :33-49
[43]   Decomposition of pointwise finite-dimensional persistence modules [J].
Crawley-Boevey, William .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (05)
[44]  
Dimitroglou Rizell G., 2020, SELECTA MATH, V26, p69, 32
[45]  
Entov M, 2003, INT MATH RES NOTICES, V2003, P1635
[46]  
Entov M, 2014, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, P1147
[47]   On Continuity of Quasimorphisms for Symplectic Maps [J].
Entov, Michael ;
Polterovich, Leonid ;
Py, Pierre ;
Khanevsky, Michael .
PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO, 2012, 296 :169-+
[48]  
Entova M, 2007, PURE APPL MATH Q, V3, P1037
[49]   MORSE-THEORY FOR FIXED-POINTS OF SYMPLECTIC DIFFEOMORPHISMS [J].
FLOER, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 16 (02) :279-281
[50]   SYMPLECTIC FIXED-POINTS AND HOLOMORPHIC SPHERES [J].
FLOER, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 120 (04) :575-611