Viterbo conjecture for Zoll symmetric spaces

被引:13
作者
Shelukhin, Egor [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
LAGRANGIAN SUBMANIFOLDS; SPECTRAL INVARIANTS; QUASI-MORPHISMS; FIXED-POINTS; SYMPLECTIC HYPERSURFACES; HAMILTONIAN-DYNAMICS; PERSISTENT HOMOLOGY; MATHEMATICAL-THEORY; HOLOMORPHIC-CURVES; PERIODIC-SOLUTIONS;
D O I
10.1007/s00222-022-01124-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Viterbo from 2007 on the existence of a uniform bound on the Lagrangian spectral norm of Hamiltonian deformations of the zero section in unit cotangent disk bundles, for bases given by compact rank one symmetric spaces S-n,RPn,CPn,HPn,n >= 1. We discuss generalizations and give applications, in particular to C0 symplectic topology. Our key method consists in a quantitative deformation argument for Floer persistence modules that allows to excise a divisor.
引用
收藏
页码:321 / 373
页数:53
相关论文
共 136 条
[1]   Simple homotopy equivalence of nearby Lagrangians [J].
Abouzaid, Mohammed ;
Kragh, Thomas .
ACTA MATHEMATICA, 2018, 220 (02) :207-237
[2]   Nearby Lagrangians with vanishing Maslov class are homotopy equivalent [J].
Abouzaid, Mohammed .
INVENTIONES MATHEMATICAE, 2012, 189 (02) :251-313
[3]   Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms [J].
Alvarez-Gavela, D. ;
Kaminker, V ;
Kislev, A. ;
Kliakhandler, K. ;
Pavlichenko, A. ;
Rigolli, L. ;
Rosen, D. ;
Shabtai, O. ;
Stevenson, B. ;
Zhang, J. .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2019, 11 (02) :467-498
[4]  
[Anonymous], 2008, Colloquium Mathematicae
[5]  
Arnol V. I., 1968, P INT C MATH MOSC, P387
[6]  
ARNOLD V, 1965, CR HEBD ACAD SCI, V261, P3719
[7]  
Arnold V. I., 1963, RUSS MATH SURV+, V18, P9, DOI DOI 10.1070/RM1963V018N05ABEH004130
[8]  
Arnold V. I., 1989, MATH METHODS CLASSIC, V60, DOI [10.1007/978-1-4757-2063-1, DOI 10.1007/978-1-4757-2063-1]
[9]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P85, DOI [10.1070/RM1963v018n06ABEH001143, DOI 10.1070/RM1963V018N06ABEH001143]
[10]   Lagrangian skeletons, periodic geodesic flows and symplectic cuttings [J].
Audin, Michele .
MANUSCRIPTA MATHEMATICA, 2007, 124 (04) :533-550