Porous Lithiophilic Li-Si Alloy-Type Interfacial Framework via Self-Discharge Mechanism for Stable Lithium Metal Anode with Superior Rate

被引:118
作者
Park, Jung Been [1 ]
Choi, Changhoon [1 ]
Yu, Seungho [2 ,3 ]
Chung, Kyung Yoon [2 ,3 ]
Kim, Dong-Wan [1 ]
机构
[1] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Energy Storage Res Ctr, Seoul 02792, South Korea
[3] Korea Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
electron-ion dual conduction; Li-Si alloy; lithium metal anodes; long-term stability; porous frameworks; PLATING/STRIPPING BEHAVIOR; ELECTROLYTE; DEPOSITION; GRAPHITE; CAPACITY; DENSITY; CELL;
D O I
10.1002/aenm.202101544
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium is regarded as an ideal anode for next-generation Li metal batteries (LMB) as it exhibits extraordinarily high theoretical capacity and the lowest electrochemical potential among all anode candidates. However, safety concerns and poor cycling stability of Li induced by uncontrollable dendrite growth and severe side reactions impede its practical application for LMB. Although various strategies for fabricating Li anodes have been suggested, developing high-rate LMB remains a significant challenge. To address this challenge, the use of a 3D porous Li-Si alloy-type interfacial framework (LSIF) created via a "self-discharge" mechanism with the aid of an electrolyte is proposed here. Exploiting the in situ spontaneous prelithiation, lithiophilic Li15Si4 particles are homogenously arranged to build porous 3D LSIF. The balanced ionic/electronic conducting LSIF serves as a stable Li host, helping to suppress dendrite growth and volume expansion during cycling. The LSIF@Li anode possesses a strong affinity toward Li, rapid Li diffusion kinetics, and low nucleation/diffusion barriers. Moreover, the LSIF@Li symmetric cells are capable of stable cycling (over 1000 cycles) even at an ultrahigh current density (15 mA cm(-2)). When paired with LiNi0.5Co0.2Mn0.3O2 or LiFePO4, LSIF@Li full cells show improved rate capability and long-term cycling stability (approximate to 2000 cycles) at 10 C.
引用
收藏
页数:14
相关论文
共 73 条
[1]   Highly Stable Lithium Metal Anode Interface via Molecular Layer Deposition Zircone Coatings for Long Life Next-Generation Battery Systems [J].
Adair, Keegan R. ;
Zhao, Changtai ;
Banis, Mohammad Norouzi ;
Zhao, Yang ;
Li, Ruying ;
Cai, Mei ;
Sun, Xueliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (44) :15797-15802
[2]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[3]   First-Principles Studies of the Lithiation and Delithiation Paths in Si Anodes in Li-Ion Batteries [J].
Chan, Kwai S. ;
Liang, Wu-Wei ;
Chan, Candace K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (37) :22775-22786
[4]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[5]   Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film [J].
Chen, Tao ;
Meng, Fanbo ;
Zhang, Zewen ;
Liang, Junchuan ;
Hu, Yi ;
Kong, Weihua ;
Zhang, Xiao Li ;
Jin, Zhong .
NANO ENERGY, 2020, 76
[6]   A "dendrite-eating" separator for high-areal-capacity lithium-metal batteries [J].
Chen, Xiao ;
Zhang, Renyuan ;
Zhao, Ruirui ;
Qi, Xiaoqun ;
Li, Kejia ;
Sun, Quan ;
Ma, Mingyuan ;
Qie, Long ;
Huang, Yunhui .
ENERGY STORAGE MATERIALS, 2020, 31 (31) :181-186
[7]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[8]   First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations [J].
Chevrier, V. L. ;
Zwanziger, J. W. ;
Dahn, J. R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 496 (1-2) :25-36
[9]   A synergistic engineering layer with a versatile H2Ti3O7 electrocatalyst for a suppressed shuttle effect and enhanced catalytic conversion in lithium-sulfur batteries [J].
Choi, Changhoon ;
Park, Jung Been ;
Kim, Dong-Wan .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (47) :25411-25424
[10]   Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating [J].
Colclasure, Andrew M. ;
Dunlop, Alison R. ;
Trask, Stephen E. ;
Polzin, Bryant J. ;
Jansen, Andrew N. ;
Smith, Kandler .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :A1412-A1424