EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS IN NEUTRAL NONLINEAR SUMMATION-DIFFERENCE SYSTEMS WITH INFINITE DELAY

被引:0
作者
Guerfi, Abderrahim [1 ]
Ardjouni, Abdelouaheb [2 ]
机构
[1] Univ Annaba, Fac Sci, Dept Math, Appl Math Lab, Annaba, Algeria
[2] Univ Souk Ahras, Dept Math & Informat, Souk Ahras, Algeria
关键词
Krasnoselskii's theorem; contraction; neutral difference equation; periodic solution; fundamental matrix solution;
D O I
10.1216/rmj.2021.51.527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Krasnoselskii's fixed point theorem to show that the neutral nonlinear summation-difference system with infinite delay Delta x(n) = P(n) = A(n)x(n) - tau(n)) + Delta Q(n, x(n g(n))) + Sigma(n)(k=-infinity) D D(n, k / f(x)k)) has a periodic solution. We also use the contraction mapping principle to show that the periodic solution is unique. An example is given to illustrate our results.
引用
收藏
页码:527 / 537
页数:11
相关论文
共 5 条
[1]  
Burton T. A., 2006, STABILITY FIXED POIN
[2]  
Elaydi S., 1999, An Introduction to Dierence Equations, P1
[3]  
Kelley W. G., DIFFERENCE EQUATIONS, V2nd
[4]  
Mesmouli M.B., 2015, MATH MORAV, V19, P57
[5]  
Smart D. R., 1974, ser. Cambridge Tracts in Mathematics, V66