On graphs with smallest eigenvalue at least-3 and their lattices

被引:11
|
作者
Koolen, Jack H. [1 ,2 ]
Yang, Jae Young [3 ]
Yang, Qianqian [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Wen Tsun Wu Key Lab, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Anhui Univ, Sch Math Sci, 111 Jiulong Rd, Hefei 230039, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
s-Integrability; Lattice; Root lattice; Hoffman graph; Eigenvalue;
D O I
10.1016/j.aim.2018.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that a connected graph with smallest eigenvalue at least -3 and large enough minimal degree is 2-integrable. This result generalizes a 1977 result of Hoffman for connected graphs with smallest eigenvalue at least -2. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:847 / 864
页数:18
相关论文
共 50 条
  • [1] On fat Hoffman graphs with smallest eigenvalue at least-3
    Jang, Hye Jin
    Koolen, Jack
    Munemasa, Akihiro
    Taniguchi, Tetsuji
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (01) : 105 - 121
  • [2] On fat Hoffman graphs with smallest eigenvalue at least-3, part II
    Koolen, Jack H.
    Li, Yan-Ran
    Yang, Qianqian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 550 : 121 - 143
  • [3] Non-geometric distance-regular graphs of diameter at least 3 with smallest eigenvalue at least-3
    Koolen, Jack H.
    Yu, Kefan
    Liang, Xiaoye
    Choi, Harrison
    Markowsky, Greg
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 126
  • [4] On distance-regular graphs with smallest eigenvalue at least -m
    Koolen, J. H.
    Bang, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (06) : 573 - 584
  • [5] On graphs with the smallest eigenvalue at least - 1 - √2, part II
    Taniguchi, Tetsuji
    ARS MATHEMATICA CONTEMPORANEA, 2012, 5 (02) : 243 - 258
  • [6] Fat Hoffman graphs with smallest eigenvalue at least-1-τ
    Munemasa, Akihiro
    Sano, Yoshio
    Taniguchi, Tetsuji
    ARS MATHEMATICA CONTEMPORANEA, 2014, 7 (01) : 247 - 262
  • [7] On graphs whose smallest eigenvalue is at least - 1 - [Square Solid]2
    Woo, Renee
    Neumaier, Arnold
    Linear Algebra and Its Applications, 1995, 226-228
  • [8] ON GRAPHS WHOSE SMALLEST EIGENVALUE IS AT LEAST -1-ROOT-2
    WOO, R
    NEUMAIER, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 577 - 591
  • [9] On graphs with the smallest eigenvalue at least-1-√2, part III
    Kubota, Sho
    Taniguchi, Tetsuji
    Yoshino, Kiyoto
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 555 - 579
  • [10] On Graphs with the Smallest Eigenvalue at Least-1-√2, Part I
    Taniguchi, Tetsuji
    ARS MATHEMATICA CONTEMPORANEA, 2008, 1 (01) : 81 - 98