An Outlier Detection Method based on Fuzzy C-Means Clustering

被引:0
作者
Li, Qiang [1 ]
Zhang, Jianpei [1 ]
Feng, Guangsheng [1 ]
机构
[1] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin, Heilongjiang, Peoples R China
来源
ADVANCED DESIGN AND MANUFACTURE II | 2010年 / 419-420卷
关键词
Clustering; Fuzzy c-means; Outlier; Information Theory; Entropy;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Both fuzzy c-means (FCM) clustering and outlier detection are useful data mining techniques in real applications. In this paper, we show that the task of outlier detection could be achieved as by-product of fuzzy c-means clustering. The proposed strategy consists of two stages. The first stage consists of purely fuzzy c-means process, while the second stage identifies exceptional objects according to a novel metric based on the entropy of membership values. We provide experimental results to demonstrate the effectiveness of our technique.
引用
收藏
页码:165 / 168
页数:4
相关论文
共 9 条
  • [1] ANGIULLI F, 2005, IEEE T KNOWLEDGE DAT
  • [2] [Anonymous], P 5 BERK S MATH STAT
  • [3] [Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
  • [4] HARKINS S, 2002, P 4 INT C DAT WAR KN, P170
  • [5] Distance-based outliers: algorithms and applications
    Knorr, EM
    Ng, RT
    Tucakov, V
    [J]. VLDB JOURNAL, 2000, 8 (3-4) : 237 - 253
  • [6] Merz C., 1996, UCI REPOSITORY MACHI
  • [7] PAPADIMITRIOU S, 2003, P 2003 INT C DAT ENG
  • [8] Tang W, 2004, PROC INT C TOOLS ART, P373
  • [9] Analysis of the weighting exponent in the FCM
    Yu, J
    Cheng, QS
    Huang, HK
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01): : 634 - 639