Wave physics as an analog recurrent neural network

被引:237
作者
Hughes, Tyler W. [1 ]
Williamson, Ian A. D. [2 ]
Minkov, Momchil [2 ]
Fan, Shanhui [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 12期
基金
瑞士国家科学基金会;
关键词
DESIGN; ROBUST;
D O I
10.1126/sciadv.aay6946
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analog machine learning hardware platforms promise to be faster and more energy efficient than their digital counterparts. Wave physics, as found in acoustics and optics, is a natural candidate for building analog processors for time-varying signals. Here, we identify a mapping between the dynamics of wave physics and the computation in recurrent neural networks. This mapping indicates that physical wave systems can be trained to learn complex features in temporal data, using standard training techniques for neural networks. As a demonstration, we show that an inverse-designed inhomogeneous medium can perform vowel classification on raw audio signals as their waveforms scatter and propagate through it, achieving performance comparable to a standard digital implementation of a recurrent neural network. These findings pave the way for a new class of analog machine learning platforms, capable of fast and efficient processing of information in its native domain.
引用
收藏
页数:6
相关论文
共 43 条
[11]  
Dorffner G., 1996, Neural Network World, V6, P447
[12]   Design of robust and efficient photonic switches using topology optimization [J].
Elesin, Y. ;
Lazarov, B. S. ;
Jensen, J. S. ;
Sigmund, O. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2012, 10 (01) :153-165
[13]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[14]   Inverse-designed metastructures that solve equations [J].
Estakhri, Nasim Mohammadi ;
Edwards, Brian ;
Engheta, Nader .
SCIENCE, 2019, 363 (6433) :1333-+
[15]   Photonic crystal slab Laplace operator for image differentiation [J].
Guo, Cheng ;
Xiao, Meng ;
Minkov, Momchil ;
Shi, Yu ;
Fan, Shanhui .
OPTICA, 2018, 5 (03) :251-256
[16]   Attosecond time-energy structure of X-ray free-electron laser pulses [J].
Hartmann, N. ;
Hartmann, G. ;
Heider, R. ;
Wagner, M. S. ;
Ilchen, M. ;
BucK, J. ;
Lindahl, A. O. ;
Benko, C. ;
Gruenert, J. ;
Krzywinski, J. ;
Liu, J. ;
Lutman, A. A. ;
Marinelli, A. ;
Maxwell, T. ;
Miahnahri, A. A. ;
Moeller, S. P. ;
Planas, M. ;
Robinson, J. ;
Kazansky, A. K. ;
Kabachnik, N. M. ;
Viefhaus, J. ;
Feurer, T. ;
Kienberger, R. ;
Coffee, R. N. ;
Helml, W. .
NATURE PHOTONICS, 2018, 12 (04) :215-+
[17]   Trainable hardware for dynamical computing using error backpropagation through physical media [J].
Hermans, Michiel ;
Burm, Michael ;
Van Vaerenbergh, Thomas ;
Dambre, Joni ;
Bienstman, Peter .
NATURE COMMUNICATIONS, 2015, 6
[18]   ACOUSTIC CHARACTERISTICS OF AMERICAN ENGLISH VOWELS [J].
HILLENBRAND, J ;
GETTY, LA ;
CLARK, MJ ;
WHEELER, K .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (05) :3099-3111
[19]  
Hochreiter S, 1997, Neural Computation, V9, P1735
[20]   Training of photonic neural networks through in situ backpropagation and gradient measurement [J].
Hughes, Tyler W. ;
Minkov, Momchil ;
Shi, Yu ;
Fan, Shanhui .
OPTICA, 2018, 5 (07) :864-871