Ionic size effects on the Poisson-Boltzmann theory

被引:15
|
作者
Colla, Thiago [1 ]
Lopes, Lucas Nunes [2 ]
dos Santos, Alexandre P. [2 ,3 ]
机构
[1] Univ Fed Ouro Preto, Inst Fis, BR-35400000 Ouro Preto, MG, Brazil
[2] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil
[3] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 147卷 / 01期
关键词
MEAN SPHERICAL APPROXIMATION; ELECTRICAL DOUBLE-LAYER; FREE-ENERGY MODEL; HYPERNETTED-CHAIN APPROXIMATION; INHOMOGENEOUS COULOMB FLUIDS; RESTRICTED-PRIMITIVE-MODEL; DENSITY-FUNCTIONAL THEORY; CHARGED HARD-SPHERES; MONTE-CARLO; MACROMOLECULAR STRUCTURE;
D O I
10.1063/1.4990737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in order to take into account the size of ions in a mean-field regime. The results are compared with Monte Carlo simulations and a density functional theory based on the fundamental measure approach and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is very good even for multivalent ions. Our results show that the theory can be applied with very good accuracy in the description of ions with highly effective ionic radii and low concentration, interacting with a colloid or a nanoparticle in an electrolyte solution. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Comparing the Predictions of the Nonlinear Poisson-Boltzmann Equation and the Ion Size-Modified Poisson-Boltzmann Equation for a Low-Dielectric Charged Spherical Cavity in an Aqueous Salt Solution
    Silalahi, Alexander R. J.
    Boschitsch, Alexander H.
    Harris, Robert C.
    Fenley, Marcia O.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (12) : 3631 - 3639
  • [22] Screening effects in dense Coulomb media: Beyond the Poisson-Boltzmann and Kirkwood approximations
    Bondarev, V. N.
    Dragan, G. S.
    PHYSICS OF PLASMAS, 2022, 29 (06)
  • [23] Reversed electrophoretic mobility of a spherical colloid in the Modified Poisson-Boltzmann approach
    Gonzalez-Tovar, Enrique
    Bhuiyan, Lutful Bari
    Outhwaite, Christopher W.
    Lozada-Cassou, Marcelo
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 228 : 160 - 167
  • [24] Ions and Inhibitors in the Binding Site of HIV Protease: Comparison of Monte Carlo Simulations and the Linearized Poisson-Boltzmann Theory
    Boda, Dezso
    Valisko, Monika
    Henderson, Douglas
    Gillespie, Dirk
    Eisenberg, Bob
    Gilson, Michael K.
    BIOPHYSICAL JOURNAL, 2009, 96 (04) : 1293 - 1306
  • [25] Application of the symmetric Poisson-Boltzmann theory to equilibrium thermodynamic properties of primitive model electrolyte mixtures
    Molero, Miguel
    Outhwaite, Christopher W.
    Bhuiyan, Lutful Bari
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 390
  • [26] Interactions between two spherical particles with nonuniform surface potentials: The linearized Poisson-Boltzmann theory
    Stankovich, J
    Carnie, SL
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 216 (02) : 329 - 347
  • [27] General solution for Poisson-Boltzmann equation in semiinfinite planar symmetry
    Chen, Z
    Singh, RK
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 245 (02) : 301 - 306
  • [28] Analytical solutions of the nonlinear Poisson-Boltzmann equation in mixture of electrolytes
    Liu, Xinmin
    Li, Hang
    Li, Rui
    Tian, Rui
    SURFACE SCIENCE, 2013, 607 : 197 - 202
  • [29] Integral equation approach for solving the nonlinear Poisson-Boltzmann equation
    Yoon, BJ
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 192 (02) : 503 - 504
  • [30] Exact Analytic Result of Contact Value for the Density in a Modified Poisson-Boltzmann Theory of an Electrical Double Layer
    Lou, Ping
    Lee, Jin Yong
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (04) : 1079 - 1083