Numerical approximation of random periodic solutions of stochastic differential equations

被引:18
作者
Feng, Chunrong [1 ]
Liu, Yu [1 ]
Zhao, Huaizhong [1 ]
机构
[1] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 05期
关键词
Random periodic solution; Periodic measure; Euler-Maruyama method; Modified Milstein method; Infinite horizon; Rate of convergence; Pull-back; Weak convergence; RANDOM DYNAMICAL-SYSTEMS; NOISE; STABILITY; SDES;
D O I
10.1007/s00033-017-0868-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the numerical approximation of random periodic solutions of stochastic differential equations (SDEs) with multiplicative noise. We prove the existence of the random periodic solution as the limit of the pull-back flow when the starting time tends to -infinity along the multiple integrals of the period. As the random periodic solution is not explicitly constructible, it is useful to study the numerical approximation. We discretise the SDE using the Euler-Maruyama scheme and modified Milstein scheme. Subsequently, we obtain the existence of the random periodic solution as the limit of the pull-back of the discretised SDE. We prove that the latter is an approximated random periodic solution with an error to the exact one at the rate of root Delta t in the mean square sense in Euler-Maruyama method and Delta t in the Milstein method. We also obtain the weak convergence result for the approximation of the periodic measure.
引用
收藏
页数:32
相关论文
共 28 条
  • [1] Bao JH, 2014, J APPL PROBAB, V51, P858
  • [2] Attractors of non-autonomous stochastic lattice systems in weighted spaces
    Bates, Peter W.
    Lu, Kening
    Wang, Bixiang
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 289 : 32 - 50
  • [3] Stochastic climate dynamics: Random attractors and time-dependent invariant measures
    Chekroun, Mickael D.
    Simonnet, Eric
    Ghil, Michael
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (21) : 1685 - 1700
  • [4] A random dynamical systems perspective on stochastic resonance
    Cherubini, Anna Maria
    Lamb, Jeroen S. W.
    Rasmussen, Martin
    Sato, Yuzuru
    [J]. NONLINEARITY, 2017, 30 (07) : 2835 - 2853
  • [5] Feng C., 2015, ARXIV14081897
  • [6] Anticipating random periodic solutions-I. SDEs with multiplicative linear noise
    Feng, Chunrong
    Wu, Yue
    Zhao, Huaizhong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (02) : 365 - 417
  • [7] Random periodic solutions of SPDEs via integral equations and Wiener-Sobolev compact embedding
    Feng, Chunrong
    Zhao, Huaizhong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (10) : 4377 - 4422
  • [8] Pathwise random periodic solutions of stochastic differential equations
    Feng, Chunrong
    Zhao, Huaizhong
    Zhou, Bo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 119 - 149
  • [9] Hartman P., 2002, Ordinary Differential Equations
  • [10] Higham D.J., 2003, LMS J. Comput. Math., V6, P297, DOI DOI 10.1112/S1461157000000462