Sampling densities of particle filter: A survey and comparison

被引:0
作者
Simandl, Miroslav [1 ]
Straka, Ondrej [1 ]
机构
[1] Univ W Bohemia, Dept Cybernet, Plzen, Czech Republic
来源
2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13 | 2007年
关键词
nonlinear filtering; state estimation; particle filter; sampling density;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals with the particle litter in discrete-time nonlinear non-Gaussian system state estimation. One of the key parameters affecting estimation quality of the particle filter is the sampling density (also called importance function or proposal density). In the literature, there are many sampling density proposals based on various ideas. The goal of the paper is to provide a survey of sampling densities, to classify them and to compare estimation quality of the particle filter with various sampling densities in an illustration example.
引用
收藏
页码:1864 / 1869
页数:6
相关论文
共 35 条
[1]   RANDOM SAMPLING APPROACH TO STATE ESTIMATION IN SWITCHING ENVIRONMENTS [J].
AKASHI, H ;
KUMAMOTO, H .
AUTOMATICA, 1977, 13 (04) :429-434
[2]  
ANDRIEU C, 2001, IEEE WORKSH STAT SIG
[3]  
[Anonymous], IEEE T SIGNAL PROCES
[4]  
[Anonymous], P 14 IFAC S SYST ID
[5]  
[Anonymous], 1975, AUTOMAT REM CONTR+
[6]  
[Anonymous], P INT C AC SPEECH SI
[7]  
[Anonymous], 2003, STATISTICS-ABINGDON, DOI DOI 10.1080/02331880309257
[8]   Mixture Kalman filters [J].
Chen, R ;
Liu, JS .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :493-508
[9]  
CHEN Z, 2003, ROBUST PARTICLE FILT
[10]  
DEFREITAS J, 2000, NEURAL COMPUT, P955