Space as a Low-Temperature Regime of Graphs

被引:7
作者
Conrady, Florian [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON, Canada
关键词
Graphs; Networks; Quantum gravity; QUANTUM-GRAVITY; MODEL;
D O I
10.1007/s10955-011-0135-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I define a statistical model of graphs in which 2-dimensional spaces arise at low temperature. The configurations are given by graphs with a fixed number of edges and the Hamiltonian is a simple, local function of the graphs. Simulations show that there is a transition between a low-temperature regime in which the graphs form triangulations of 2-dimensional surfaces and a high-temperature regime, where the surfaces disappear. I use data for the specific heat and other observables to discuss whether this is a phase transition. The surface states are analyzed with regard to topology and defects.
引用
收藏
页码:898 / 917
页数:20
相关论文
共 29 条
[1]  
Ahlfors L.V., 1960, Riemann Surfaces
[2]  
AMBJORN J, ARXIVHEPTH0604212, P63514
[3]  
[Anonymous], ARXIVGRQC0607032
[4]  
[Anonymous], ARXIV10040352HEPTH
[5]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[6]  
CARAVELLI F, ARXIV10081340GRQC
[7]   Quantum gravity on the lattice [J].
Hamber, Herbert W. .
GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (04) :817-876
[8]   Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime [J].
Hamma, Alioscia ;
Markopoulou, Fotini ;
Lloyd, Seth ;
Caravelli, Francesco ;
Severini, Simone ;
Markstrom, Klas .
PHYSICAL REVIEW D, 2010, 81 (10)
[9]  
Hartmann AK, 2002, PHYS REV B, V66, DOI [10.1103/PhysRevB.66.094419, 10.1103/PhysRevB.66.224419]
[10]  
Huggett S., 1994, INTRO TWISTOR THEORY