Mean-square estimate of automorphic L-functions

被引:0
作者
Yao, Weili [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Automorphic L-function; cusp form; Fourier coeffiient; FOURIER COEFFICIENTS; BOUNDS;
D O I
10.1007/s11464-020-0817-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a holomorphic Hecke cusp form with even integral weight k > 2 for the full modular group, and let chi be a primitive Dirichlet character modulo q. Let L-f (s, chi) be the automorphic L-function attached to f and chi. We study the mean-square estimate of L-f (s, chi) and establish an asymptotic formula.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 1997, GRAD STUD MATH
[2]   Shifted convolution sums and subconvexity bounds for automorphic L-functions [J].
Blomer, V .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (73) :3905-3926
[3]   Hybrid bounds for twisted L-functions [J].
Blomer, Valentin ;
Harcos, Gergely .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 621 :53-79
[4]  
Deligne P., 1971, LECT NOTES MATH, V175, P139
[5]  
Deligne P., 1974, I HAUTES ETUDES SCI, V43, P273, DOI 10.1007/BF02684373
[6]   BOUNDS FOR AUTOMORPHIC L-FUNCTIONS [J].
DUKE, W ;
FRIEDLANDER, J ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1993, 112 (01) :1-8
[7]  
Hafner JL., 1989, ENSEIGN MATH, V35, P375
[8]   An additive problem in the Fourier coefficients of cusp forms [J].
Harcos, G .
MATHEMATISCHE ANNALEN, 2003, 326 (02) :347-365
[9]   SUMS OF FOURIER COEFFICIENTS OF CUSP FORMS [J].
Lau, Yuk-Kam ;
Lue, Guangshi .
QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (03) :687-716
[10]   Contributions to the theory of Ramanujan's function tau-(n) and similar arithmetical functions II. The order of the fourier coefficients of integral modular forms [J].
Rankin, RA ;
Hardy, GH .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 :357-372