Defect and Linker Effects on the Binding of Organophosphorous Compounds in UiO-66 and Rare-Earth MOFs

被引:42
作者
Harvey, Jacob A. [1 ]
Greathouse, Jeffery A. [1 ]
Gallis, Donna F. Sava [2 ]
机构
[1] Sandia Natl Labs, Geochem Dept, POB 5800, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Nanoscale Sci Dept, POB 5800, Albuquerque, NM 87185 USA
关键词
METAL-ORGANIC FRAMEWORKS; AB-INITIO PSEUDOPOTENTIALS; TOTAL-ENERGY CALCULATIONS; CATALYTIC HYDROLYSIS; MOLECULAR-DYNAMICS; BASIS-SETS; TRANSITION; FLEXIBILITY; COMPOSITES; VALENCE;
D O I
10.1021/acs.jpcc.8b06198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption of chemical warfare agents and their simulants by Zr (UiO-66) and rare-earth (Y, UiO-66DOBDC analog) -based metal organic frameworks (MOFs) is explored here using density functional theory. In particular, we investigate the role of linker functional group (OH, H) and metal atom identity on the binding energies of organo-" phosphorous compounds. Commonly used cluster approximations for MOF secondary building units and various optimization constraints are compared with three-dimensional periodic results. An in-depth scan of potential binding sites and orientations reveals little effect due to metal identity, whereas the effect of linker functionalization depends on the substrate. This finding strongly suggests that full linkers and functional groups should be included in cluster models. Importantly, defect sites show considerably improved binding of organophosphorous compounds as compared to ideal clusters. Favorable binding is also demonstrated at two additional adsorption sites, ZrOH and mu 3-OH, that likely play a role in the initial adsorption process. The results presented here portray the importance of including full threedimensional pore structures in the adsorption process of organophosphorous compounds in MOFs; a critical first step in the degradation of these harmful chemicals.
引用
收藏
页码:26889 / 26896
页数:8
相关论文
共 45 条
[1]   Gabedit-A Graphical User Interface for Computational Chemistry Softwares [J].
Allouche, Abdul-Rahman .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :174-182
[2]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[3]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[4]   Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents [J].
Bobbitt, N. Scott ;
Mendonca, Matthew L. ;
Howarth, Ashlee J. ;
Islamoglu, Timur ;
Hupp, Joseph T. ;
Farha, Omar K. ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3357-3385
[5]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[6]   Industrial applications of metal-organic frameworks [J].
Czaja, Alexander U. ;
Trukhan, Natalia ;
Mueller, Ulrich .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1284-1293
[7]   Metal-Organic Frameworks for Air Purification of Toxic Chemicals [J].
DeCoste, Jared B. ;
Peterson, Gregory W. .
CHEMICAL REVIEWS, 2014, 114 (11) :5695-5727
[8]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 1ST-ROW TRANSITION-ELEMENTS [J].
DOLG, M ;
WEDIG, U ;
STOLL, H ;
PREUSS, H .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (02) :866-872
[9]   Flexibility in metal-organic framework materials: Impact on sorption properties [J].
Fletcher, AJ ;
Thomas, KM ;
Rosseinsky, MJ .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (08) :2491-2510
[10]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+