Mining Maximal Frequent Patterns With Similarity Matrices of Data Records

被引:0
作者
Yuan, Hua [1 ]
Wu, Junjie [2 ]
机构
[1] Univ Elect Sci & Technol China, Dept Management Sci & E Commerce, Chengdu 610054, Peoples R China
[2] Beihang Univ, Sch Econ & Management, Beijing 100083, Peoples R China
来源
ELECTRONIC-BUSINESS INTELLIGENCE: FOR CORPORATE COMPETITIVE ADVANTAGES IN THE AGE OF EMERGING TECHNOLOGIES & GLOBALIZATION | 2010年 / 14卷
基金
中国国家自然科学基金;
关键词
Data mining; Maximal frequent pattern; Similarity matrix;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we proposed a similarity matrix based method to mining maximal frequent patterns from large database. The study is very different from the previous Apriori-liked method. Especially, the method can be performed directly on the original data in database without various format transformation. The analyzing and experimental results show that the method is useful for frequent pattern mining tasks with large data set.
引用
收藏
页码:498 / +
页数:3
相关论文
共 8 条
[1]  
Agarwal R. C., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P108, DOI 10.1145/347090.347114
[2]   Gene association analysis: a survey of frequent pattern mining from gene expression data [J].
Alves, Ronnie ;
Rodriguez-Baena, Domingo S. ;
Aguilar-Ruiz, Jesus S. .
BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) :210-224
[3]  
Bayardo R. J. Jr., 1998, SIGMOD Record, V27, P85, DOI 10.1145/276305.276313
[4]  
Burdick Doug, P 17 ICDE
[5]   Efficiently mining maximal frequent itemsets [J].
Gouda, K ;
Zaki, MJ .
2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, :163-170
[6]  
Hasan Mohammad Al, 2009, Proceedings of the SIAM Data Mining, P650
[7]  
LaRosa C, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P880
[8]   Computational aspects of mining maximal frequent patterns [J].
Yang, Guizhen .
THEORETICAL COMPUTER SCIENCE, 2006, 362 (1-3) :63-85