Microfluidic Devices in the Fast-Growing Domain of Single-Cell Analysis

被引:27
作者
Khan, Mashooq [1 ]
Mao, Sifeng [1 ]
Li, Weiwei [1 ]
Lin, Jin-Ming [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing Key Lab Microanalyt Methods & Instrumenta, MOE Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
biochemistry; life sciences; microfluidics; single-cell analysis; tissue dissociation; CIRCULATING TUMOR-CELLS; POLYMERASE-CHAIN-REACTION; DETERMINISTIC LATERAL DISPLACEMENT; ENZYME-FREE DISSOCIATION; HIGH-THROUGHPUT; MASS-SPECTROMETRY; CONTINUOUS SEPARATION; GENE-EXPRESSION; WHOLE-BLOOD; MICROWELL ARRAYS;
D O I
10.1002/chem.201800305
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent advances in cellular analysis revealed that the seemingly identical cells are heterogeneous in term of functionality, compositions, and genetic performance. These differences cause difficulty in the diagnostic for a specific model of disease. Detection of biomolecules such as DNA, RNA, and protein or analysis of cell(s), detection of cell surface molecules, and secreted protein, can help us to improve the understanding of a targeted disease and development of new diagnostic and therapeutic approaches. A single-cell includes the minute quantity of these target molecules. Microfluidic devices have the ability to capture a single-cell and its lysate into a pico or femtoliter volumes droplet, or micro-well thus preventing dilution and limiting diffusion. In this review we described the advancement and limitations in microfluidic techniques used toward single-cells analysis.
引用
收藏
页码:15398 / 15420
页数:23
相关论文
共 264 条
[1]   DNA sequence analysis with droplet-based microfluidics [J].
Abate, Adam R. ;
Hung, Tony ;
Sperling, Ralph A. ;
Mary, Pascaline ;
Rotem, Assaf ;
Agresti, Jeremy J. ;
Weiner, Michael A. ;
Weitz, David A. .
LAB ON A CHIP, 2013, 13 (24) :4864-4869
[2]   Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis [J].
Aceto, Nicola ;
Bardia, Aditya ;
Miyamoto, David T. ;
Donaldson, Maria C. ;
Wittner, Ben S. ;
Spencer, Joel A. ;
Yu, Min ;
Pely, Adam ;
Engstrom, Amanda ;
Zhu, Huili ;
Brannigan, Brian W. ;
Kapur, Ravi ;
Stott, Shannon L. ;
Shioda, Toshi ;
Ramaswamy, Sridhar ;
Ting, David T. ;
Lin, Charles P. ;
Toner, Mehmet ;
Haber, Daniel A. ;
Maheswaran, Shyamala .
CELL, 2014, 158 (05) :1110-1122
[3]   Polymerase chain reaction in microfluidic devices [J].
Ahrberg, Christian D. ;
Manz, Andreas ;
Chung, Bong Geun .
LAB ON A CHIP, 2016, 16 (20) :3866-3884
[4]   Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis [J].
Alazzam, Anas ;
Mathew, Bobby ;
Alhammadi, Falah .
JOURNAL OF SEPARATION SCIENCE, 2017, 40 (05) :1193-1200
[5]   Focus on advanced semiconductor heterostructures for optoelectronics [J].
Amann, Markus C. ;
Capasso, Federico ;
Larsson, Anders ;
Pessa, Markus .
NEW JOURNAL OF PHYSICS, 2009, 11
[6]   Miniaturized isothermal nucleic acid amplification, a review [J].
Asiello, Peter J. ;
Baeumner, Antje J. .
LAB ON A CHIP, 2011, 11 (08) :1420-1430
[7]   Electroporation and lysis of marine microalga Karenia brevis for RNA extraction and amplification [J].
Bahi, M. M. ;
Tsaloglou, M. -N. ;
Mowlem, M. ;
Morgan, H. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2011, 8 (57) :601-608
[8]   Sorting cells by size, shape and deformability [J].
Beech, Jason P. ;
Holm, Stefan H. ;
Adolfsson, Karl ;
Tegenfeldt, Jonas O. .
LAB ON A CHIP, 2012, 12 (06) :1048-1051
[9]   Single-cell trapping and selective treatment via co-flow within a microfluidic platform [J].
Benavente-Babace, A. ;
Gallego-Perez, D. ;
Hansford, D. J. ;
Arana, S. ;
Perez-Lorenzo, E. ;
Mujika, M. .
BIOSENSORS & BIOELECTRONICS, 2014, 61 :298-305
[10]   Velocity valleys enable efficient capture and spatial sorting of nanoparticle-bound cancer cells [J].
Besant, Justin D. ;
Mohamadi, Reza M. ;
Aldridge, Peter M. ;
Li, Yi ;
Sargent, Edward H. ;
Kelley, Shana O. .
NANOSCALE, 2015, 7 (14) :6278-6285