Dynamics of a modified Leslie-Gower model with double Allee effects

被引:55
作者
Feng, Peng [1 ]
Kang, Yun [2 ]
机构
[1] Florida Gulf Coast Univ, Dept Math, Ft Myers, FL 33965 USA
[2] Arizona State Univ, Dept Math Appl Sci & Math, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
Leslie-Gower; Allee effect; Hopf bifurcation; Predator-prey model; PREDATOR-PREY MODEL; STABILITY; BIFURCATION; SYSTEM;
D O I
10.1007/s11071-015-1927-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Bifurcation analysis of a class of modified Leslie-Gower model with Allee effects in both predator and prey species is given in detail. We show the existence of a heteroclinic separatrix that divides the dynamics of the predator and prey populations and considers the Hopf bifurcation around the interior positive equilibrium. We show that when there are two interior equilibria, the smaller equilibrium is always a saddle, and the larger equilibrium can be either an attractor or a repeller surrounded by a limit cycle. Combining mathematical analysis and numerical simulation, we show that the double Allee effects greatly alter the outcome of the survival of both species.
引用
收藏
页码:1051 / 1062
页数:12
相关论文
共 27 条
[1]  
Andronov A.A., 1973, Qualitative Theory of Second Order Differential Equations
[2]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[3]   Study of a Leslie-Gower-type tritrophic population model [J].
Aziz-Alaoui, MA .
CHAOS SOLITONS & FRACTALS, 2002, 14 (08) :1275-1293
[4]   Changes in diet and trophic position of a top predator 10 years after a mass mortality of a key prey [J].
Chiaradia, Andre ;
Forero, Manuela G. ;
Hobson, Keith A. ;
Cullen, J. Mike .
ICES JOURNAL OF MARINE SCIENCE, 2010, 67 (08) :1710-1720
[5]   The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model [J].
Collings, JB .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 36 (02) :149-168
[6]  
Courchamp F, 2008, ALLEE EFFECTS IN ECOLOGY AND CONSERVATION, P1
[7]   Inverse density dependence and the Allee effect [J].
Courchamp, F ;
Clutton-Brock, T ;
Grenfell, B .
TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (10) :405-410
[8]  
Dennis B., 1989, Natural Resource Modeling, V3, P481
[9]   Effect of a protection zone in the diffusive Leslie predator-prey model [J].
Du, Yihong ;
Peng, Rui ;
Wang, Mingxin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :3932-3956
[10]  
Dumortier F, 2006, UNIVERSITEXT, P1