A Radon transform on the cylinder

被引:1
|
作者
Coyoli, Alejandro [1 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
Radon transform; Parametric; Integral transform; Harmonic analysis; Fractional integrals; Cylinder;
D O I
10.1016/j.jmaa.2022.126119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a parametric Radon transform R that assigns to a Sobolev function on the cylinder S x R in R-3 its mean values along sets E-zeta formed by the intersections of planes through the origin and the cylinder. We show that R is a continuous operator, prove an inversion formula, provide a support theorem, as well as a characterization of its null space. We conclude by presenting a formula for the dual transform R*. We show that R and its dual R* are related to the right-sided and left-sided Chebyshev fractional integrals. Using this relationship, we characterize the null space of R and R* and provide an inversion formula for R*. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Radon Transform on a Harmonic Manifold
    François Rouvière
    The Journal of Geometric Analysis, 2021, 31 : 6365 - 6385
  • [3] Radon Transform on a Harmonic Manifold
    Rouviere, Francois
    Dieudonne, Laboratoire J. A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 6365 - 6385
  • [4] Wavelet transform and radon transform on the quaternion Heisenberg group
    He, Jian Xun
    Liu, He Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 619 - 636
  • [5] On a Radon transform
    Gots, Ekaterina
    Lyakhov, Lev
    OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2008, 181 : 187 - +
  • [6] Inversion of the seismic parabolic Radon transform and the seismic hyperbolic Radon transform
    Moon, Sunghwan
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (02) : 317 - 327
  • [7] Cylinder Surface Feature Extraction Combining High-Order Gaussian Filter with Radon Transform
    Dai J.
    Zeng W.
    Yang W.
    Lu W.
    Liu X.
    Qin H.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (04): : 136 - 142and149
  • [8] Radon Transform on the Torus
    Abouclaz, Ahmed
    Rouviere, Francois
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (04) : 463 - 471
  • [9] Radon transform on distributions
    Ramm, AG
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (09) : 202 - 206
  • [10] Radon Transform on the Torus
    Ahmed Abouelaz
    François Rouvière
    Mediterranean Journal of Mathematics, 2011, 8 : 463 - 471