STRONG CONVERGENCE OF PRINCIPLE OF AVERAGING FOR MULTISCALE STOCHASTIC DYNAMICAL SYSTEMS

被引:0
作者
Liu, Di [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Stochastic Differential Equations; Time Scale Separation; Averaging of Perturbations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study stochastic differential equations with two well-separated time scales. We prove that the rate of strong convergence to the averaged effective dynamics is of order O(epsilon(1/2)), where epsilon << 1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples.
引用
收藏
页码:999 / 1020
页数:22
相关论文
共 12 条
[1]  
Engquist B., 2003, COMMUN MATH SCI, V1, P87
[2]  
Freidlin MI, 2012, Random Perturbations of Dynamical Systems
[3]  
Givon D, 2006, COMMUN MATH SCI, V4, P707
[4]  
Khasminskii R., 1980, STOCHASTIC STABILITY
[5]  
Khasminskii R. Z., 1963, Theory Probab. Appl., V8, P1
[6]   On averaging principles: An asymptotic expansion approach [J].
Khasminskii, RZ ;
Yin, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (06) :1534-1560
[7]  
Kifer Y., 2001, STOCH DYNAM, V1, P1, DOI DOI 10.1142/S0219493701000023
[8]  
Kunita H., 1990, STOCHASTIC FLOWS STO
[9]  
LIU WED, 2005, COMMUN PUR APPL MATH, V58, P1544
[10]   STABILITY OF MARKOVIAN PROCESSES .3. FOSTER-LYAPUNOV CRITERIA FOR CONTINUOUS-TIME PROCESSES [J].
MEYN, SP ;
TWEEDIE, RL .
ADVANCES IN APPLIED PROBABILITY, 1993, 25 (03) :518-548