Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles

被引:29
作者
Xing, Chao [1 ]
Chen, Ziyi [1 ]
Dai, Junduan [1 ]
Zhou, Jie [1 ]
Wang, Liping [1 ]
Zhang, Kai-Long [1 ]
Yin, Xiaofei [2 ]
Lu, Chunhua [1 ]
Yang, Huanghao [1 ]
机构
[1] Fuzhou Univ, Fujian Prov Key Lab Anal & Detect Technol Food Sa, State Key Lab Photocatalysis Energy & Environm, Coll Chem,MOE Key Lab Analyt Sci Food Safety & Bi, Fuzhou 350116, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 1, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
DNA tiles; light-controlled; toehold-mediated; AND gate circuit; strand-displacement;
D O I
10.1021/acsami.9b21778
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inspired by cytoskeletal structures that respond sensitively to environmental changes and chemical inputs, we report a strategy to trigger and finely control the assembly of stimulus-responsive DNA nanostructures with light under isothermal conditions. The strategy is achieved via integrating an upstream light-controlled, toehold-mediated DNA strand displacement circuit with a downstream DNA tile self-assembly process. By rationally designing an upstream DNA strand module, we further transform the upstream DNA strand displacement circuit to an "AND gate" circuit to control the assembly of DNA nanostructures. This example represents the demonstration of the spatial and temporal assembly of DNA nanostructures using a noninvasive chemical input. Such a light-controlled DNA logic circuit not only adds a new element to the tool box of DNA nanotechnology but also inspires us to assemble complex and responsive nanostructures.
引用
收藏
页码:6336 / 6342
页数:7
相关论文
共 41 条
[31]  
Amodio A., Adedeji A.F., Castronovo M., Franco E., Ricci F., PH-Controlled Assembly of DNA Tiles, J. Am. Chem. Soc., 138, pp. 12735-12738, (2016)
[32]  
Amodio A., Del Grosso E., Troina A., Placidi E., Ricci F., Remote Electronic Control of DNA-Based Reactions and Nanostructure Assembly, Nano Lett., 18, pp. 2918-2923, (2018)
[33]  
Gareau D., Desrosiers A., Vallee-Belisle A., Programmable Quantitative DNA Nanothermometers, Nano Lett., 16, pp. 3976-3981, (2016)
[34]  
Willner E.M., Kamada Y., Suzuki Y., Emura T., Hidaka K., Dietz H., Sugiyama H., Endo M., Single-Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors, Angew. Chem., Int. Ed., 56, pp. 15324-15328, (2017)
[35]  
Huang F., Lin M., Duan R., Lou X., Xia F., Willner I., Photoactivated Specific mRNA Detection in Single Living Cells by Coupling ″signal-on″ Fluorescence and ″signal-off″ Electrochemical Signals, Nano Lett., 18, pp. 5116-5123, (2018)
[36]  
Jiang Q., Liu Q., Shi Y., Wang Z.-G., Zhan P., Liu J., Liu C., Wang H., Shi X., Zhang L., Sun J., Ding B., Liu M., Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami, Nano Lett., 17, pp. 7125-7130, (2017)
[37]  
Kuzyk A., Yang Y., Duan X., Stoll S., Govorov A.O., Sugiyama H., Endo M., Liu N., A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function, Nat. Commun., 7, (2016)
[38]  
Ordoukhanian P., Taylor J.S., Design and Synthesis of a Versatile Photocleavable DNA Building Block. Application to Phototriggered Hybridization, J. Am. Chem. Soc., 117, pp. 9570-9571, (1995)
[39]  
Seo T.S., Bai X., Kim D.H., Meng Q., Shi S., Ruparel H., Li Z., Turro N.J., Ju J., Four-Color DNA Sequencing by Synthesis on A Chip Using Photocleavable Fluorescent Nucleotides, Proc. Natl. Acad. Sci. U. S. A., 102, pp. 5926-5931, (2005)
[40]  
Huang F., You M., Han D., Xiong X., Liang H., Tan W., DNA Branch Migration Reactions through Photocontrollable Toehold Formation, J. Am. Chem. Soc., 135, pp. 7967-7973, (2013)