Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles

被引:28
作者
Xing, Chao [1 ]
Chen, Ziyi [1 ]
Dai, Junduan [1 ]
Zhou, Jie [1 ]
Wang, Liping [1 ]
Zhang, Kai-Long [1 ]
Yin, Xiaofei [2 ]
Lu, Chunhua [1 ]
Yang, Huanghao [1 ]
机构
[1] Fuzhou Univ, Fujian Prov Key Lab Anal & Detect Technol Food Sa, State Key Lab Photocatalysis Energy & Environm, Coll Chem,MOE Key Lab Analyt Sci Food Safety & Bi, Fuzhou 350116, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 1, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
DNA tiles; light-controlled; toehold-mediated; AND gate circuit; strand-displacement;
D O I
10.1021/acsami.9b21778
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inspired by cytoskeletal structures that respond sensitively to environmental changes and chemical inputs, we report a strategy to trigger and finely control the assembly of stimulus-responsive DNA nanostructures with light under isothermal conditions. The strategy is achieved via integrating an upstream light-controlled, toehold-mediated DNA strand displacement circuit with a downstream DNA tile self-assembly process. By rationally designing an upstream DNA strand module, we further transform the upstream DNA strand displacement circuit to an "AND gate" circuit to control the assembly of DNA nanostructures. This example represents the demonstration of the spatial and temporal assembly of DNA nanostructures using a noninvasive chemical input. Such a light-controlled DNA logic circuit not only adds a new element to the tool box of DNA nanotechnology but also inspires us to assemble complex and responsive nanostructures.
引用
收藏
页码:6336 / 6342
页数:7
相关论文
共 41 条
[1]  
Mann S., Life as A Nanoscale Phenomenon, Angew. Chem., Int. Ed., 47, pp. 5306-5320, (2008)
[2]  
Bao G., Suresh S., Cell and Molecular Mechanics of Biological Materials, Nat. Mater., 2, pp. 715-725, (2003)
[3]  
Hernaiz M.J., De La Fuente J.M., Barrientos A.G., Penades S., A Model System Mimicking Glycosphingolipid Clusters to Quantify Carbohydrate Self-Interactions by Surface Plasmon Resonance, Angew. Chem., Int. Ed., 41, pp. 1554-1557, (2002)
[4]  
Pollard T.D., Borisy G.G., Cellular Motility Driven by Assembly and Disassembly of Actin Filaments, Cell, 112, pp. 453-465, (2003)
[5]  
He Y., Tian Y., Ribbe A.E., Mao C., Highly Connected Two-Dimensional Crystals of DNA Six-Point-Stars, J. Am. Chem. Soc., 128, pp. 15978-15979, (2006)
[6]  
Ke Y., Ong L.L., Shih W.M., Yin P., Three-Dimensional Structures Self-Assembled from DNA Bricks, Science, 338, pp. 1177-1183, (2012)
[7]  
Wei B., Dai M., Yin P., Complex Shapes Self-Assembled from Single-Stranded DNA Tiles, Nature, 485, pp. 623-626, (2012)
[8]  
Zhao Z., Liu Y., Yan H., Organizing DNA Origami Tiles into Larger Structures Using Preformed Scaffold Frames, Nano Lett., 11, pp. 2997-3002, (2011)
[9]  
Rothemund P.W.K., Folding DNA to Create Nanoscale Shapes and Patterns, Nature, 440, pp. 297-302, (2006)
[10]  
Jones M.R., Seeman N.C., Mirkin C.A., Nanomaterials. Programmable Materials and the Nature of the DNA Bond, Science, 347, (2015)