A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media

被引:43
作者
Cakoni, F [1 ]
Colton, D [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
anisotropic media; electromagnetic scattering; conductive boundary condition; inverse scattering; mixed boundary conditions; transmission problem;
D O I
10.1017/S0013091502000664
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the support of a (possibly) coated anisotropic medium is uniquely determined by the electric far-field patterns corresponding to incident time-harmonic electromagnetic plane waves with arbitrary polarization and direction. Our proof avoids the use of a fundamental solution to Maxwell's equations in an anisotropic medium and instead relies on the well-posedness and regularity properties of solutions to an interior transmission problem for Maxwell's equations.
引用
收藏
页码:293 / 314
页数:22
相关论文
共 23 条
[1]   THE CONDUCTIVE BOUNDARY-CONDITION FOR MAXWELLS EQUATIONS [J].
ANGELL, TS ;
KIRSCH, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) :1597-1610
[2]  
[Anonymous], FINITE ELEMENT METHO
[3]   The linear sampling method for anisotropic media [J].
Cakoni, F ;
Colton, D ;
Haddar, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 146 (02) :285-299
[4]  
CAKONI F, UNPUB ELECTROMAGNETI
[5]  
CAKONI F, 2001, LINEAR SAMPLING ME 2
[6]  
COARSI S, 2000, SIAM J NUMER ANAL, V38, P1129
[7]   THE UNIQUENESS OF A SOLUTION TO AN INVERSE SCATTERING PROBLEM FOR ELECTROMAGNETIC-WAVES [J].
COLTON, D ;
PAIVARINTA, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 119 (01) :59-70
[8]  
COLTON D, 2003, IN PRESS COMPUTATION
[9]  
Colton D., 1998, INVERSE ACOUSTIC ELE, DOI DOI 10.1007/978-3-662-03537-5
[10]   A REMARK ON THE REGULARITY OF SOLUTIONS OF MAXWELL EQUATIONS ON LIPSCHITZ-DOMAINS [J].
COSTABEL, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (04) :365-368