Packing (1,1,2,4)-coloring of subcubic outerplanar graphs

被引:6
作者
Kostochka, Alexandr [1 ,2 ]
Liu, Xujun [1 ,3 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
基金
俄罗斯基础研究基金会;
关键词
Packing coloring; Cubic graphs; Independent sets; CHROMATIC NUMBER; COLORINGS;
D O I
10.1016/j.dam.2021.05.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For 1 <= s(1) <= s(2) <= ... <= s(k) and a graph G, a packing (s(1), s(2), ..., s(k))-coloring of G is a partition of V(G) into sets V-1, V-2, ..., V-k such that, for each 1 <= i <= k the distance between any two distinct x, y is an element of V-i is at least s(i) + 1. The packing chromatic number, chi(p)(G), of a graph G is the smallest k such that G has a packing (1, 2, ..., k)-coloring. It is known that there are trees of maximum degree 4 and subcubic graphs G with arbitrarily large chi(p)(G). Recently, there was a series of papers on packing (s(1), s(2), ..., s(k))-colorings of subcubic graphs in various classes. We show that every 2-connected subcubic outerplanar graph has a packing (1, 1, 2)-coloring and every subcubic outerplanar graph is packing (1, 1, 2, 4)-colorable. Our results are sharp in the sense that there are 2-connected subcubic outerplanar graphs that are not packing (1, 1, 3)-colorable and there are subcubic outerplanar graphs that are not packing (1, 1, 2, 5)-colorable. We also show subcubic outerplanar graphs that are not packing (1, 2, 2, 4)-colorable and not packing (1, 1, 3, 4)-colorable. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 28 条
[1]   The packing coloring problem for lobsters and partner limited graphs [J].
Argiroffo, G. ;
Nasini, G. ;
Torres, P. .
DISCRETE APPLIED MATHEMATICS, 2014, 164 :373-382
[2]   Packing Chromatic Number of Subdivisions of Cubic Graphs [J].
Balogh, Jozsef ;
Kostochka, Alexandr ;
Liu, Xujun .
GRAPHS AND COMBINATORICS, 2019, 35 (02) :513-537
[3]   Packing chromatic number of cubic graphs [J].
Balogh, Jozsef ;
Kostochka, Alexandr ;
Liu, Xujun .
DISCRETE MATHEMATICS, 2018, 341 (02) :474-483
[4]  
Borodin O.V., 2011, Journal of Applied and Industrial Mathematics, V5, P535
[5]   On the packing chromatic number of Cartesian products, hexagonal lattice, and trees [J].
Bresar, Bostjan ;
Klavzar, Sandi ;
Rall, Douglas F. .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) :2303-2311
[6]   A SURVEY ON PACKING COLORINGS [J].
Bresar, Bostjan ;
Ferme, Jasmina ;
Klavzar, Sandi ;
Rall, Douglas F. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) :923-970
[7]   Packing colorings of subcubic outerplanar graphs [J].
Bresar, Bostjan ;
Gastineau, Nicolas ;
Togni, Olivier .
AEQUATIONES MATHEMATICAE, 2020, 94 (05) :945-967
[8]   An infinite family of subcubic graphs with unbounded packing chromatic number [J].
Bresar, Bostjan ;
Ferme, Jasmina .
DISCRETE MATHEMATICS, 2018, 341 (08) :2337-2342
[9]   Packing chromatic number versus chromatic and clique number [J].
Bresar, Bostjan ;
Klavzar, Sandi ;
Rall, Douglas F. ;
Wash, Kirsti .
AEQUATIONES MATHEMATICAE, 2018, 92 (03) :497-513
[10]   Packing chromatic number under local changes in a graph [J].
Bresar, Bostjan ;
Klavzar, Sandi ;
Rall, Douglas F. ;
Washe, Kirsti .
DISCRETE MATHEMATICS, 2017, 340 (05) :1110-1115