Energetic electron and ion generation from interactions of intense laser pulses with laser machined conical targets

被引:6
作者
Matsuoka, T. [1 ]
Reed, S. [1 ]
McGuffey, C. [1 ]
Bulanov, S. S. [1 ]
Dollar, F. [1 ]
Willingale, L. [1 ]
Chvykov, V. [1 ]
Kalinchenko, G. [1 ]
Brantov, A. [2 ]
Bychenkov, V. Yu. [2 ]
Rousseau, P. [1 ]
Yanovsky, V. [1 ]
Litzenberg, D. W. [3 ]
Krushelnick, K. [1 ]
Maksimchuk, A. [1 ]
机构
[1] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia
[3] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
PLASMA; ULTRAINTENSE; ULTRASHORT; ABSORPTION; DENSITY; LIGHT;
D O I
10.1088/0029-5515/50/5/055006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generation of energetic electron and proton beams was studied from the interaction of high intensity laser pulses with pre-drilled conical targets. These conical targets are laser machined onto flat targets using 7-180 mu J pulses whose axis of propagation is identical to that of the main high intensity pulse. This method significantly relaxes requirements for alignment of conical targets in systematic experimental investigations and also reduces the cost of target fabrication. These experiments showed that conical targets increase the electron beam charge by up to 44 +/- 18% compared with flat targets. We also found greater electron beam divergence for conical targets than for flat targets, which was due to escaping electrons from the surface of the cone wall into the surrounding solid target region. In addition, the experiments showed similar maximum proton energies for both targets since the larger electron beam divergence balances the increase in electron beam charge for conical targets. 2D particle in cell simulations were consistent with the experimental results. Simulations for conical target without preplasma showed higher energy gain for heavy ions due to 'directed coulomb explosion'. This may be useful for medical applications or for ion beam fast ignition fusion.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets [J].
Vyskocil, Jiri ;
Klimo, Ondrej ;
Weber, Stefan .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (05)
[32]   Generation of Terahertz Radiation by Relativistic Laser Pulses on the Surface of Thick Solid Targets and Thin Foils [J].
Mitrofanov, A. V. ;
Rozhko, M. V. ;
Nazarov, M. M. ;
Yakushkin, N. V. ;
Voronin, A. A. ;
Fedotov, A. B. ;
Sidorov-Biryukov, D. A. .
JETP LETTERS, 2024, 119 (03) :166-172
[33]   Generation of GeV ion bunches from high-intensity laser-target interactions [J].
Davis, J. ;
Petrov, G. M. .
PHYSICS OF PLASMAS, 2009, 16 (02)
[34]   Intense attosecond pulses carrying orbital angular momentum using laser plasma interactions [J].
Wang, J. W. ;
Zepf, M. ;
Rykovanov, S. G. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[35]   Energetic-ion generation by the combination of laser pressure and Coulomb explosion [J].
Jin Zhang-Ying ;
Shen Bai-Fei ;
Zhang Xiao-Mei ;
Wang Feng-Chao ;
Ji Liang-Liang .
CHINESE PHYSICS B, 2009, 18 (12) :5395-5400
[36]   Harmonics generation in ultra-thin nanofilms irradiated by intense nonrelativistic laser pulses [J].
Korneev, Ph .
LASER PHYSICS, 2012, 22 (01) :184-194
[37]   Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas [J].
Naseri, N. ;
Bychenkov, V. Yu. ;
Rozmus, W. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[38]   Supercontinuum generation in water by intense, femtosecond laser pulses under anomalous chromatic dispersion [J].
Vasa, Parinda ;
Dharmadhikari, Jayashree A. ;
Dharmadhikari, Aditya K. ;
Sharma, Rahul ;
Singh, Mamraj ;
Mathur, Deepak .
PHYSICAL REVIEW A, 2014, 89 (04)
[39]   High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum [J].
Mendonca, J. T. ;
Vieira, J. .
PHYSICS OF PLASMAS, 2015, 22 (12)
[40]   Collimated quasi-monoenergetic electron beam generation from intense laser solid interaction [J].
Wang, W. M. ;
Chen, L. M. ;
Mao, J. Y. ;
Huang, K. ;
Ma, Y. ;
Zhao, J. R. ;
Zhang, L. ;
Yan, W. C. ;
Li, D. Z. ;
Ma, J. L. ;
Li, Y. T. ;
Lu, X. ;
Wei, Z. Y. ;
Sheng, Z. M. ;
Zhang, J. .
HIGH ENERGY DENSITY PHYSICS, 2013, 9 (03) :578-582