On holomorphic isometric immersions of nonhomogeneous Kahler-Einstein manifolds into the infinite dimensional complex projective space

被引:3
作者
Hao, Yihong [1 ]
Wang, An [1 ]
Zhang, Liyou [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
北京市自然科学基金;
关键词
Isometric immersion; Kahler-Einstein manifold; Complex projective space; KAEHLER SUBMANIFOLDS; SYMMETRIC DOMAINS; CURVATURE; FORMS;
D O I
10.1016/j.jmaa.2014.09.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we study the existence of holomorphic isometric immersions from nonhomogeneous Kahler-Einstein manifolds into infinite dimensional complex projective space. It can also be regarded as an application of explicit solutions of complex Monge-Ampere equations on some pseudoconvex domains. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:547 / 560
页数:14
相关论文
共 37 条
[1]   The explicit forms and zeros of the Bergman kernel function for Hartogs type domains [J].
Ahn, Heungju ;
Park, Jong-Do .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (08) :3518-3547
[2]  
[Anonymous], 1994, Analysis on Symmetric Cones
[3]  
Arazy J., 1995, CONTEMP MATH, V185, P7, DOI [10.1090/conm/185/02147, DOI 10.1090/CONM/185/02147]
[4]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[5]   CURVATURE IN HERMITIAN METRIC [J].
BOCHNER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (02) :179-195
[6]   ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS [J].
CALABI, E .
ANNALS OF MATHEMATICS, 1953, 58 (01) :1-23
[7]  
Cartan E., 1935, ABH MATH SEM HAMBURG, VII, P116, DOI DOI 10.1007/BF02940719
[8]  
Chern SS., 1967, J DIFFER GEOM, V1, P21, DOI [10.4310/jdg/1214427878, DOI 10.4310/JDG/1214427878]
[9]  
Clozel L, 2003, J REINE ANGEW MATH, V558, P47
[10]  
Di Scala AJ, 2012, ASIAN J MATH, V16, P479