Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface

被引:15
作者
Di Cristo, M. [1 ]
Francini, E. [2 ]
Lin, C. -L. [3 ]
Vessella, S. [2 ]
Wang, J. -N. [4 ]
机构
[1] Politecn Milan, Milan, Italy
[2] Univ Firenze, Florence, Italy
[3] Natl Cheng Kung Univ, Tainan, Taiwan
[4] Natl Taiwan Univ, Taipei, Taiwan
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2017年 / 108卷 / 02期
关键词
Carleman estimate; Elliptic operator; Nonsmooth coefficient; DIVERGENCE FORM; DIFFERENTIAL-EQUATIONS; OPERATORS; CONTINUATION; UNIQUENESS;
D O I
10.1016/j.matpur.2016.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. The argument we use is of microlocal nature. Yet, not relying on pseudodifferential calculus, our approach allows one to achieve almost optimal assumptions on the regularity of the coefficients and, consequently, of the interface. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:163 / 206
页数:44
相关论文
共 17 条
[1]   ELLIPTIC-EQUATIONS IN DIVERGENCE FORM, GEOMETRIC CRITICAL-POINTS OF SOLUTIONS, AND STEKLOFF EIGENFUNCTIONS [J].
ALESSANDRINI, G ;
MAGNANINI, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1259-1268
[2]  
[Anonymous], 1963, Bull. Acad. Polonaise Sci.
[3]  
[Anonymous], 1954, CONV INT EQ LIN DER
[4]  
Bers L., 1964, Partial Differential Equations (Lectures in Applied Mathematics vol III), pp xiii+343
[5]   UNIQUENESS IN THE CAUCHY PROBLEM FOR PARTIAL DIFFERENTIAL EQUATIONS [J].
CALDERON, AP .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (01) :16-36
[6]  
Carleman T., 1939, Ark. Mat. Astr. Fys., V26, P9
[7]   Three-region inequalities for the second order elliptic equation with discontinuous coefficients and size estimate [J].
Francini, E. ;
Lin, C. -L. ;
Vessella, S. ;
Wang, J. -N. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5306-5323
[8]  
HORMANDER L, 1983, COMMUN PART DIFF EQ, V8, P21
[9]  
Hrmander L., 1985, The analysis of linear partial differential operators III, Pseudodifferential operators
[10]  
Isakov V., 2006, APPL MATH SCI, V12