STABLE SELF-SIMILAR BLOW-UP DYNAMICS FOR SLIGHTLY L2 SUPER-CRITICAL NLS EQUATIONS

被引:33
作者
Merle, Frank [1 ,2 ]
Raphael, Pierre [3 ]
Szeftel, Jeremie [4 ,5 ]
机构
[1] Univ Cergy Pontoise, Dept LAGA, F-95302 Cergy Pontoise, France
[2] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[3] Inst Math Toulouse, F-31062 Toulouse 9, France
[4] Ecole Normale Super, Dept Math & Applicat, CNRS, F-75230 Paris 05, France
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Nonlinear Schrodinger equation; blow up; supercritical; NONLINEAR SCHRODINGER-EQUATION; STABILITY; SINGULARITY; WAVES;
D O I
10.1007/s00039-010-0081-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the focusing nonlinear Schrodinger equations i partial derivative(t)u+ Delta u + u vertical bar u vertical bar (p- 1) = 0 in dimension 1 <= N <= 5 and for slightly L-2 super- critical nonlinearities p(c) < p < (1 + epsilon) p(c) with p(c) = 1+ 4/N and 0 < epsilon << 1. We prove the existence and stability in the energy space H-1 of a self- similar finite- time blow- up dynamics and provide a qualitative description of the singularity formation near the blow-up time.
引用
收藏
页码:1028 / 1071
页数:44
相关论文
共 26 条
[1]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[2]   Spectra of linearized operators for NLS solitary waves [J].
Chang, Shu-Ming ;
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1070-1111
[3]   Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension [J].
Fibich, G ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :183-240
[4]   Singular ring solutions of critical and supercritical nonlinear Schrodinger equations [J].
Fibich, Gadi ;
Gavish, Nir ;
Wang, Xiao-Ping .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (01) :55-86
[5]   Proof of a Spectral Property related to the singularity formation for the L2 critical nonlinear Schrodinger equation [J].
Fibich, Gadi ;
Merle, Frank ;
Raphael, Pierre .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 220 (01) :1-13
[6]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[7]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[8]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[9]   SPATIAL STRUCTURE OF THE FOCUSING SINGULARITY OF THE NONLINEAR SCHRODINGER-EQUATION - A GEOMETRICAL ANALYSIS [J].
KOPELL, N ;
LANDMAN, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (05) :1297-1323
[10]  
KRIEGER J, COMM PURE A IN PRESS