共 50 条
Static and Dynamic Simulation of Single and Binary Component Adsorption of CO2 and CH4 on Fixed Bed Using Molecular Sieve of Zeolite 4A
被引:10
|作者:
Parinyakit, Supatsorn
[1
]
Worathanakul, Patcharin
[1
,2
]
机构:
[1] King Mongkuts Univ Technol North Bangkok, Fac Engn, Dept Chem Engn, 1518 Pracharat 1, Bangkok 10800, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Sci & Technol Res Inst, Ctr Ecomat & Cleaner Technol CECT, 1518 Pracharat 1, Bangkok 10800, Thailand
来源:
关键词:
adsorption;
simulation;
carbon dioxide;
methane;
Aspen Adsorption;
CARBON-DIOXIDE;
ACTIVATED CARBON;
CO2/CH4;
SEPARATION;
GAS-ADSORPTION;
ION-EXCHANGE;
KINETICS;
EQUILIBRIUM;
MIXTURES;
NITROGEN;
METHANE;
D O I:
10.3390/pr9071250
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
The simulation of carbon dioxide (CO2)-methane (CH4) mixed gas adsorption and the selectivity on zeolite 4A using Aspen Adsorption were studied. The influence of temperature ranging from 273 to 343 K, pressure up to 10 bar and various compositions of CO2 in the binary system were simulated. The findings of the study demonstrate that the models are accurate. In addition, the effects of various key parameters such as temperature, pressure, and various compositions of binary gases were investigated. The highest CO2 and CH4 adsorption are found at 273 K and 10 bar in the Langmuir isotherm model with 5.86 and 2.88 mmol/g, respectively. The amount of CO2 adsorbed and the selectivity of the binary mixture gas depends on the composition of CO2. The kinetics of adsorption for pure components of CO2 at high temperatures can reach saturation faster than CH4. The influence of the physical properties of zeolite 4A on kinetic adsorption were also studied, and it was observed that small adsorbent particles, large pore diameter, and large pore volume would enter saturation quickly. The prediction of CO2-CH4 mixed gas adsorption and selectivity on zeolite 4A were developed for further use for commercial gas separation.
引用
收藏
页数:18
相关论文