Heat transfer efficiency of hierarchical corrugated sandwich panels

被引:10
|
作者
Sun, Shanyouming [1 ,2 ,3 ]
Sheng, Yinglong [1 ]
Feng, Shangsheng [3 ,4 ]
Lu, Tian Jian [2 ,5 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[3] Xi An Jiao Tong Univ, Bioinspired Engn & Biomech Ctr BEBC, Xian 710049, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, MIIT Key Lab Multifunct Lightweight Mat & Struct, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical porous structure; Artificial intelligence optimization; Heat transfer; Sandwich panel; Thermo-mechanical design; MECHANICAL-PROPERTIES; THERMAL TRANSPORT; ENERGY-ABSORPTION; CRASHWORTHINESS; HONEYCOMBS; CONVECTION; SINKS; FLOW;
D O I
10.1016/j.compstruct.2021.114195
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
As a kind of biomimetic materials, ultralight hierarchical porous structures possessing excellent mechanical properties such as load bearing, impact energy absorption, vibration reduction and noise attenuation have been exploited. Often, these porous structures exhibit continuous flow passages that allow for cooling fluids to pass through, thus enabling simultaneous load-bearing and active heat dissipation. This study investigated the convective cooling efficiency of a sandwich panel with hierarchical corrugated core subjected to heating from the face sheets and active cooling through the core. Built upon the classical fin approach, a theoretical model coupling wall heat conduction and fluid convection in the core was established for the hierarchical corrugated-core sandwich panel, covering the full range of fluid flow (from laminar, transition to turbulent). The theoretical model predictions were validated against full numerical simulations. Based on the theoretical model, an artificial intelligence optimization method (i.e., the ant colony algorithm) was adopted to find the optimal combination of key independent geometric parameters of the sandwich panel for maximized heat transfer performance. For the problem of multi-variables optimization, it was demonstrated that the ant colony algorithm is superior in terms of computational time to the traditional exhaustive search method. For a given pressure drop, a set of optimum geometric parameters corresponding to maximum cooling efficiency was found for the proposed hierarchical corrugated-core sandwich panel.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
    Pan, Xin
    Chen, Liming
    Deng, Jianqiang
    Zhao, Wanqi
    Jin, Shuai
    Du, Bing
    Chen, Yong
    Li, Weiguo
    Liu, Tao
    COMPOSITE STRUCTURES, 2023, 324
  • [32] Effect of core materials on the low-velocity impact behaviour of trapezoidal corrugated sandwich panels
    Rong, Yu
    Luo, Wei
    Liu, Jingxi
    Shen, Zhiyuan
    He, Wentao
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2020, 25 (05) : 505 - 516
  • [33] Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading
    Hou, Shujuan
    Shu, Chengfu
    Zhao, Shuyun
    Liu, Tangying
    Han, Xu
    Li, Qing
    COMPOSITE STRUCTURES, 2015, 126 : 371 - 385
  • [34] EXPERIMENTAL INVESTIGATION INTO THE EFFECT OF IMPACT LOADING ON THE RESPONSE OF METALLIC TRAPEZOIDAL CORRUGATED CORE SANDWICH PANELS
    Yang, Haifu
    Cheng, Yuansheng
    Zhang, Pan
    Liu, Jun
    Chen, Kai
    PROCEEDINGS OF THE ASME 37TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2018, VOL 3, 2018,
  • [35] Strength optimization of ultralight corrugated-channel-core sandwich panels
    ZHAO ZhenYu
    LI Lang
    WANG Xin
    ZHANG QianCheng
    HAN Bin
    LU TianJian
    Science China(Technological Sciences), 2019, 62 (08) : 1467 - 1477
  • [36] Free vibration analysis of composite sandwich panels with hierarchical honeycomb sandwich core
    Wang, Yong-jing
    Zhang, Zhi-jia
    Xue, Xiao-min
    Zhang, Ling
    THIN-WALLED STRUCTURES, 2019, 145
  • [37] Equivalent single-layer model for hierarchical diamond honeycomb sandwich panels using variational asymptotic method
    Miao, Siqi
    Zhong, Yifeng
    Zhou, Yujie
    Liu, Rong
    Evrard, Irakoze Alain
    COMPOSITE STRUCTURES, 2024, 339
  • [38] Numerical study of heat transfer and load-bearing performances of corrugated sandwich structure with open-cell metal foam
    Xiao, Tian
    Lu, Liu
    Peng, Wenhao
    Yue, Zengshen
    Yang, Xiaohu
    Lu, Tian Jian
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 215
  • [39] Optimum design of metallic corrugated core sandwich panels subjected to blast loads
    Liang, CC
    Yang, MF
    Wu, PW
    OCEAN ENGINEERING, 2001, 28 (07) : 825 - 861
  • [40] A Comparative Blast Mitigation Performance Evaluation of Metallic Sandwich Panels with Honeycomb, Corrugated, Auxetic, and Foam Cores
    Patel, Murlidhar
    Patel, Shivdayal
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024,