Correlation length in a generalized two-dimensional XY model

被引:17
|
作者
Duong Xuan Nui [1 ,2 ]
Le Tuan [3 ]
Nguyen Duc Trung Kien [1 ]
Pham Thanh Huy [1 ]
Dang, Hung T. [1 ,4 ,5 ]
Dao Xuan Viet [1 ]
机构
[1] Hanoi Univ Sci & Technol, Adv Inst Sci & Technol, Hanoi 10000, Vietnam
[2] Vietnam Natl Univ Forestry, Fac Mech & Civil Engn, Hanoi 10000, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Engn Phys, Hanoi 10000, Vietnam
[4] Thanh Tay Univ, Thanh Tay Inst Adv Study TIAS, Hanoi 10000, Vietnam
[5] A&A Green Phoenix Grp, Phenikaa Res & Technol Inst PRATI, 167 Hoang Ngan, Hanoi 10000, Vietnam
关键词
MONTE-CARLO; PHASE-DIAGRAM; ISING-MODEL; TRANSITION; SYSTEMS; TEMPERATURE;
D O I
10.1103/PhysRevB.98.144421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The measurements of the magnetic and nematic correlation lengths in a generalization of the two-dimensional XY model on the square lattice are presented using classical Monte Carlo simulation. The full phase diagram is reexamined based on these correlation lengths, demonstrating their power in studying generalized XY models. The ratio between the correlation length and the lattice size has distinctive behaviors which can be used to distinguish different types of phase transition. More importantly, the magnetic correlation length give more insights into the tricritical region where the paramagnetic, nematic, and quasi-long-range phases meet. It shows signatures for the intermediate region starting from the tricritical point, where the transition line is neither of the same physics as the Ising transition below nor the Berezinskii-Kosterlitz-Thouless transition far above the tricritical point.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Perturbation expansion for the diluted two-dimensional XY model
    Kapikranian, O.
    Berche, B.
    Holovatch, Yu.
    PHYSICS LETTERS A, 2007, 366 (1-2) : 150 - 154
  • [22] Percolation of the two-dimensional XY model in the flow representation
    Wang, Bao-Zong
    Hou, Pengcheng
    Huang, Chun-Jiong
    Deng, Youjin
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [23] Universal magnetic fluctuations in the two-dimensional XY model
    Archambault, P.
    Bramwell, S.T.
    Fortin, J.-Y.
    Holdsworth, P.C.W.
    Peysson, S.
    Pinton, J.-F.
    Journal of Applied Physics, 1998, 83 (11 pt 2):
  • [24] Critical analysis of two-dimensional classical XY model
    Jha, Raghav G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (08):
  • [25] Vortex statistics in a disordered two-dimensional XY model
    Tang, LH
    PHYSICAL REVIEW B, 1996, 54 (05): : 3350 - 3366
  • [26] Information exchange dynamics of the two-dimensional XY model
    Kim, Minsu
    Jeong, Daun
    Kwon, H. W.
    Choi, M. Y.
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [27] Universal magnetic fluctuations in the two-dimensional XY model
    Archambault, P
    Bramwell, ST
    Fortin, JY
    Holdsworth, PCW
    Peysson, S
    Pinton, JF
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) : 7234 - 7236
  • [28] Ageing phenomena in two-dimensional XY-model
    Alekseyev, S. V.
    Prudnikov, P. V.
    Prudnikov, V. V.
    MAGNETISM AND MAGNETIC MATERIALS V, 2012, 190 : 3 - 6
  • [29] Thermal entanglement in a two-dimensional Heisenberg XY model
    Zhang, R
    Zhu, SQ
    PHYSICS LETTERS A, 2006, 348 (3-6) : 110 - 118
  • [30] Nonequilibrium critical dynamics of the two-dimensional XY model
    Berthier, L
    Holdsworth, PCW
    Sellitto, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (09): : 1805 - 1824