Expanding Puck and Schurmann Inter Fiber Fracture Criterion for Fiber Reinforced Thermoplastic 3D-Printed Composite Materials

被引:16
|
作者
Dutra, Thiago Assis [1 ,2 ,3 ]
Luiz Ferreira, Rafael Thiago [1 ]
Resende, Hugo Borelli [1 ]
Blinzler, Brina Jane [2 ]
Larsson, Ragnar [2 ]
机构
[1] ITA Aeronaut Inst Technol, DCTA ITA IEM, GPMA Res Grp Addit Mfg, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Chalmers Univ Technol, Dept Ind & Mat Sci, Div Mat & Computat Mech, SE-41296 Gothenburg, Sweden
[3] IPT Inst Technol Res, LEL Lightweight Struct Lab, BR-12247016 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
3D-printed composite materials; additive manufacturing; failure of composites; puck and schurmann failure criterion; CARBON-FIBER; MECHANICAL-PROPERTIES; FAILURE CRITERION; POLYMER COMPOSITES; TENSILE PROPERTIES; STRENGTH; IMPLEMENTATION; OPTIMIZATION; FABRICATION; EFFICIENT;
D O I
10.3390/ma13071653
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work expands the application of Puck and Schurmann Inter-Fiber Fracture criterion to fiber reinforced thermoplastic 3D-printed composite materials. The effect of the ratio between the transverse compressive strength and the in-plane shear strength is discussed and a new transition point between the fracture conditions under compressive loading is proposed. The recommended values of the inclination parameters, as well as their effects on the proposed method, are also discussed. Failure envelopes are presented for different 3D-printed materials and also for traditional composite materials. The failure envelopes obtained here are compared to those provided by the original Puck and Schurmann criterion and to those provided by Gu and Chen. The differences between them are analyzed with the support of geometrical techniques and also statistical tools. It is demonstrated that the Expanded Puck and Schurmann is capable of providing more suitable failure envelopes for fiber reinforced thermoplastic 3D-printed composite materials in addition to traditional semi-brittle, brittle and intrinsically brittle composite materials.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Fracture studies of 3D-printed continuous glass fiber reinforced composites
    Frohn-Soerensen, Peter
    Reuter, Jonas
    Engel, Bernd
    Reinicke, Tamara
    Khosravani, Mohammad Reza
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 119
  • [2] Mechanism based failure of 3D-printed continuous carbon fiber reinforced thermoplastic composites
    Dutra, Thiago Assis
    Ferreira, Rafael Thiago Luiz
    Resende, Hugo Borelli
    Blinzler, Brina Jane
    Asp, Leif E.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 213
  • [3] Recent developments in improving the fracture toughness of 3D-printed fiber-reinforced polymer composites
    Khan, Tayyab
    Ali, Murad
    Riaz, Zakia
    Butt, Haider
    Abu Al-Rub, Rashid K.
    Dong, Yu
    Umer, Rehan
    COMPOSITES PART B-ENGINEERING, 2024, 283
  • [4] Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic
    Dutra, Thiago Assis
    Luiz Ferreira, Rafael Thiago
    Resende, Hugo Borelli
    Guimaraes, Alessandro
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (03)
  • [5] Tensile Performance of 3D-Printed Continuous Fiber-Reinforced Nylon Composites
    Mohammadizadeh, Mahdi
    Fidan, Ismail
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2021, 5 (03):
  • [6] Development of 3D-printed basalt fiber reinforced thermoplastic honeycombs with enhanced compressive mechanical properties
    Sang, Lin
    Han, Shuangfeng
    Peng, Xingshuang
    Jian, Xigao
    Wang, Jinyan
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 125
  • [7] 3D-Printed Wood-Fiber Reinforced Architected Cellular Composites
    Estakhrianhaghighi, Ehsan
    Mirabolghasemi, Armin
    Zhang, Yingnan
    Lessard, Larry
    Akbarzadeh, Abdolhamid
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (11)
  • [8] 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review
    Sanei, Seyed Hamid Reza
    Popescu, Diana
    JOURNAL OF COMPOSITES SCIENCE, 2020, 4 (03):
  • [9] Quantifying the influence of reinforcement architecture on the planar mechanical properties of 3D-printed continuous fiber-reinforced thermoplastic composites
    De la Fuente, Andres
    Castillo, Rodrigo
    Onate, Angelo
    Hermosilla, Rodolfo
    Escudero, Benjamin
    Sepulveda, Joaquin
    Vargas-Silva, Gustavo
    Melendrez, Manuel F.
    Tuninetti, Victor
    Medina, Carlos
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (3-4) : 1575 - 1583
  • [10] Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber
    Santos, Jonnathan D.
    Guerrero, Jose M.
    Blanco, Norbert
    Fajardo, Jorge I.
    Paltan, Cesar A.
    POLYMERS, 2023, 15 (10)