Non-coding RNAs as regulators of embryogenesis

被引:487
作者
Pauli, Andrea [1 ,2 ]
Rinn, John L. [2 ,3 ]
Schier, Alexander F. [1 ,2 ,3 ,4 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Harvard Univ, Harvard Stem Cell Inst, Cambridge, MA 02138 USA
[4] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
DROSOPHILA DOSAGE COMPENSATION; X-CHROMOSOME INACTIVATION; TO-ZYGOTIC TRANSITION; MIR-200; FAMILY; STEM-CELLS; MESENCHYMAL TRANSITION; MICRORNA BIOGENESIS; GENE-EXPRESSION; REPRESSORS ZEB1; MESSENGER-RNAS;
D O I
10.1038/nrg2904
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Non-coding RNAs (ncRNAs) are emerging as key regulators of embryogenesis. They control embryonic gene expression by several means, ranging from microRNA-induced degradation of mRNAs to long ncRNA-mediated modification of chromatin. Many aspects of embryogenesis seem to be controlled by ncRNAs, including the maternal-zygotic transition, the maintenance of pluripotency, the patterning of the body axes, the specification and differentiation of cell types and the morphogenesis of organs. Drawing from several animal model systems, we describe two emerging themes for ncRNA function: promoting developmental transitions and maintaining developmental states. These examples also highlight the roles of ncRNAs in ensuring a robust commitment to one of two possible cell fates.
引用
收藏
页码:136 / 149
页数:14
相关论文
共 168 条
[1]   The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans [J].
Abbott, AL ;
Alvarez-Saavedra, E ;
Miska, EA ;
Lau, NC ;
Bartel, DP ;
Horvitz, HR ;
Ambros, V .
DEVELOPMENTAL CELL, 2005, 9 (03) :403-414
[2]   Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila [J].
Akhtar, A ;
Becker, PB .
MOLECULAR CELL, 2000, 5 (02) :367-375
[3]   A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome [J].
Alekseyenko, Artyom A. ;
Peng, Shouyong ;
Larschan, Erica ;
Gorchakov, Andrey A. ;
Lee, Ok-Kyung ;
Kharchenko, Peter ;
McGrath, Sean D. ;
Wang, Charlotte I. ;
Mardis, Elaine R. ;
Park, Peter J. ;
Kuroda, Mitzi I. .
CELL, 2008, 134 (04) :599-609
[4]   Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability [J].
Alvarez-Saavedra, Ezequiel ;
Horvitz, H. Robert .
CURRENT BIOLOGY, 2010, 20 (04) :367-373
[5]   Noncoding RNA in development [J].
Amaral, Paulo P. ;
Mattick, John S. .
MAMMALIAN GENOME, 2008, 19 (7-8) :454-492
[6]   MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer [J].
Asangani, I. A. ;
Rasheed, S. A. K. ;
Nikolova, D. A. ;
Leupold, J. H. ;
Colburn, N. H. ;
Post, S. ;
Allgayer, H. .
ONCOGENE, 2008, 27 (15) :2128-2136
[7]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[8]   A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition [J].
Beltran, Manuel ;
Puig, Isabel ;
Pena, Cristina ;
Miguel Garcia, Jose ;
Belen Alvarez, Ana ;
Pena, Raul ;
Bonilla, Felix ;
Garcia de Herreros, Antonio .
GENES & DEVELOPMENT, 2008, 22 (06) :756-769
[9]  
Bender W, 2002, DEVELOPMENT, V129, P4923
[10]   MicroRNAs in the Drosophila bithorax complex [J].
Bender, Welcome .
GENES & DEVELOPMENT, 2008, 22 (01) :14-19