Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation

被引:101
作者
Jaeger, Michael [1 ]
Schuepbach, Simon [1 ]
Gertsch, Andreas [1 ]
Kitz, Michael [1 ]
Frenz, Martin [1 ]
机构
[1] Univ Bern, Inst Appl Phys, CH-3012 Bern, Switzerland
关键词
D O I
10.1088/0266-5611/23/6/S05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel Fourier transform based reconstruction algorithm for solving the inverse problem in optoacoustic imaging is presented, which improves reconstruction efficiency and image quality. Fourier algorithms make use of an interpolation law when signal Fourier components are mapped to source Fourier components. To overcome inadequacies affiliated with interpolation methods such as nearest neighbour, linear, cubic or spline interpolation, together with signal data zero padding, we present a regularized interpolation method based on a forward model explicitly formulated for the compactly supported signal data. Simulations performed on a digital tissue phantom reveal the potential of this novel reconstruction method, which results in images of enhanced quality but without the need of using time-consuming zero-padding.
引用
收藏
页码:S51 / S63
页数:13
相关论文
共 32 条
[1]   Analytical form of the particle distribution based on the cumulant solution of the elastic Boltzmann transport equation [J].
Cai, W ;
Xu, M ;
Alfano, RR .
PHYSICAL REVIEW E, 2005, 71 (04)
[2]   Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors [J].
Chou, CH ;
Chen, CD ;
Wang, CRC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (22) :11135-11138
[3]   Thermoacoustic computed tomography with large planar receivers [J].
Haltmeier, M ;
Scherzer, O ;
Burgholzer, P ;
Paltauf, G .
INVERSE PROBLEMS, 2004, 20 (05) :1663-1673
[4]   Filtered backprojection for thermoacoustic computed AV tomography in spherical geometry [J].
Haltmeier, M ;
Schuster, T ;
Scherzer, O .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (16) :1919-1937
[5]   Image reconstruction for photoacoustic scanning of tissue structures [J].
Hoelen, CGA ;
de Mul, FFM .
APPLIED OPTICS, 2000, 39 (31) :5872-5883
[6]   In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor [J].
Kolkman, RGM ;
Hondebrink, E ;
Steenbergen, W ;
de Mul, FFM .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (02) :343-346
[7]   Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response [J].
Köstli, KP ;
Beard, PC .
APPLIED OPTICS, 2003, 42 (10) :1899-1908
[8]   Optoacoustic imaging using a three-dimensional reconstruction algorithm [J].
Köstli, KP ;
Frauchiger, D ;
Niederhauser, JJ ;
Paltauf, G ;
Weber, HP ;
Frenz, M .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2001, 7 (06) :918-923
[9]   Temporal backward projection of optoacoustic pressure transients using Fourier transform methods [J].
Köstli, KP ;
Frenz, M ;
Bebie, H ;
Weber, HP .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (07) :1863-1872
[10]   Thermoacoustic CT with radio waves: A medical imaging paradigm [J].
Kruger, RA ;
Kopecky, KK ;
Aisen, AM ;
Reinecke, DR ;
Kruger, GA ;
Kiser, WL .
RADIOLOGY, 1999, 211 (01) :275-278