On the martingale problem and Feller and strong Feller properties for weakly coupled Levy type operators

被引:6
作者
Xi, Fubao [1 ]
Zhu, Chao [2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Weakly coupled Levy type operator; Martingale problem; Feller property; Strong Feller property; Coupling method; DIFFUSION-PROCESSES; EXPONENTIAL ERGODICITY; STABILITY; UNIQUENESS; LAW;
D O I
10.1016/j.spa.2018.02.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the martingale problem for a class of weakly coupled Levy type operators. It is shown that under some mild conditions, the martingale problem is well-posed and uniquely determines a strong Markov process (X, Lambda). The process (X, Lambda), called a regime-switching jump diffusion with Levy type jumps, is further shown to possess Feller and strong Feller properties under non-Lipschitz conditions via the coupling method. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:4277 / 4308
页数:32
相关论文
共 43 条
  • [1] [Anonymous], 1979, GRUNDLEHREN MATH WIS
  • [2] [Anonymous], 1976, PRINCIPLES MATH ANAL
  • [3] [Anonymous], 1988, PURE APPL MATH
  • [4] [Anonymous], MEM AM MATH SOC
  • [5] [Anonymous], APPL MATH NEW YORK
  • [6] [Anonymous], HYBRID SWITCHING DIF
  • [7] [Anonymous], J MATH WUHAN
  • [8] [Anonymous], 1991, Graduate Texts in Mathematics
  • [9] [Anonymous], 1986, KEXUE TONGBAO CHINES
  • [10] UNIQUENESS IN LAW FOR PURE JUMP MARKOV-PROCESSES
    BASS, RF
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (02) : 271 - 287