Voiculescu amenable Hopf von Neumann algebras with applications

被引:2
作者
Akhtari, Fatemeh [1 ]
Nasr-Isfahani, Rasoul [1 ,2 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Additively uniformly continuous; Hopf von Neumann algebra; left fixed point; locally compact group; right module; Voiculescu amenability; COMPACT QUANTUM GROUPS; BICROSSED PRODUCT CONSTRUCTION; KAC ALGEBRAS; CO-AMENABILITY;
D O I
10.1142/S0219498816500791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Hopf von Neumann algebra (M, Gamma), we give a fixed point characterization of Voiculescu amenability of (M, Gamma) in terms of modules over M-*. As a consequence, we present some descriptions for amenability of locally compact groups in terms of certain associated Hopf von Neumann algebras. We finally apply this result to some modules of continuous functions on a multiplicative subsemigroup of M-*.
引用
收藏
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1977, MATH SURVEYS MONOGR
[2]   On amenability and co-amenability of algebraic quantum groups and their corepresentations [J].
Bédos, E ;
Conti, R ;
Tuset, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (01) :17-60
[3]   Amenability and co-amenability for locally compact quantum groups [J].
Bédos, E ;
Tuset, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :865-884
[4]  
Berglund J.F., 1989, Analysis on Semigroups
[5]   Amenability and the bicrossed product construction [J].
Desmedt, P ;
Quaegebeur, J ;
Vaes, S .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1259-1277
[6]   SYMMETRICAL KAC ALGEBRAS [J].
ENOCK, M ;
SCHWARTZ, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1986, 125 (02) :363-379
[7]  
Enock M., 1992, Kac Algebras and Duality of Locally Compact Groups
[8]   COMMON FIXED POINTS FOR SEMIGROUPS OF POINTWISE LIPSCHITZIAN MAPPINGS IN BANACH SPACES [J].
Kozlowski, W. M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) :353-361
[9]   Multipliers of Kac algebras [J].
Kraus, J ;
Ruan, ZJ .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (02) :213-248
[10]   Locally compact quantum groups in the Von Neumann algebraic setting [J].
Kustermans, J ;
Vaes, S .
MATHEMATICA SCANDINAVICA, 2003, 92 (01) :68-92