Chirality effect on electron phonon relaxation, energy loss, and thermopower in single and bilayer graphene in BG regime

被引:19
作者
Ansari, Meenhaz [1 ]
Ashraf, S. S. Z. [2 ]
机构
[1] Aligarh Muslim Univ, Zakir Husain Coll Engn & Technol, Appl Phys Dept, Aligarh 202002, Uttar Pradesh, India
[2] Aligarh Muslim Univ, Dept Phys, Fac Sci, Aligarh 202002, Uttar Pradesh, India
关键词
THERMAL-PROPERTIES; HOT; TRANSPORT; LAYER;
D O I
10.1063/1.5008961
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the energy dependent electron-phonon relaxation rate, energy loss rate, and phonon drag thermopower in single layer graphene (SLG) and bilayer graphene (BLG) under the BlochGruneisen (BG) regime through coupling to acoustic phonons interacting via the Deformation potential in the Boltzmann transport equation approach. We find that the consideration of the chiral nature of electrons alters the temperature dependencies in two-dimensional structures of SLG and BLG from that shown by other conventional 2DEG system. Our investigations indicate that the BG analytical results are valid for temperatures far below the BG limit (similar to T-BG/4) which is in conformity with a recent experimental investigation for SLG [C. B. McKitterick et al., Phys. Rev. B 93, 075410 (2016)]. For temperatures above this renewed limit (similar to T-BG/4), there is observed a suppression in energy loss rate and thermo power in SLG, but enhancement is observed in relaxation rate and thermopower in BLG, while a suppression in the energy loss rate is observed in BLG. This strong nonmonotonic temperature dependence in SLG has also been experimentally observed within the BG limit [Q. Ma et al., Phys. Rev. Lett. 112, 247401 (2014)]. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Inelastic carrier lifetime in a coupled graphene/electron-phonon system: Role of plasmon-phonon coupling [J].
Ahn, Seongjin ;
Hwang, E. H. ;
Min, Hongki .
PHYSICAL REVIEW B, 2014, 90 (24)
[2]   Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene [J].
Baker, A. M. R. ;
Alexander-Webber, J. A. ;
Altebaeumer, T. ;
McMullan, S. D. ;
Janssen, T. J. B. M. ;
Tzalenchuk, A. ;
Lara-Avila, S. ;
Kubatkin, S. ;
Yakimova, R. ;
Lin, C. -T. ;
Li, L. -J. ;
Nicholas, R. J. .
PHYSICAL REVIEW B, 2013, 87 (04)
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[5]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[7]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[8]  
Cantrell B., 1987, J PHYS C SOLID STATE, V20, P1985
[9]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[10]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)