BAYESIAN PARAMETER IDENTIFICATION IN PLASTICITY

被引:0
作者
Adeli, Ehsan [1 ]
Rosic, Bojana [1 ]
Matthies, Hermann G. [1 ]
Reinstaeler, Sven [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Sci Comp, Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Struct Anal, Braunschweig, Germany
来源
COMPUTATIONAL PLASTICITY XIV: FUNDAMENTALS AND APPLICATIONS | 2017年
关键词
Viscoplastic Model; Uncertainty Quantification; Probabilistic Inverse Approach; Polynomial Chaos; CONSTITUTIVE MODEL; INELASTIC FLOW;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To evaluate the cyclic behaviour under different loading conditions using the kinematic and isotropic hardening theory of steel a Chaboche visco-plastic material model is employed. The parameters of a constitutive model are usually identified by minimization of the distance between model response and experimental data. However, measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article the Choboche model is used and a stochastic simulation technique is applied to generate artificial data which exhibit the same stochastic behaviour as experimental data. Then the model parameters are identified by applying a variaty of Bayes's theorem. Identified parameters are compared with the true parameters in the simulation and the efficiency of the identification method is discussed.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 50 条
[41]   Parameters identification of cable stayed footbridges using Bayesian inference [J].
Pepi, Chiara ;
Gioffre', Massimiliano ;
Grigoriu, Mircea D. .
MECCANICA, 2019, 54 (09) :1403-1419
[42]   EPISTEMIC UNCERTAINTY IDENTIFICATION VIA DIFFERENT BAYESIAN INFERENCE METHODS [J].
Janouchova, E. ;
Kucerova, A. ;
Sykora, J. .
ENGINEERING MECHANICS 2016, 2016, :246-249
[43]   Bayesian differential programming for robust systems identification under uncertainty [J].
Yang, Yibo ;
Bhouri, Mohamed Aziz ;
Perdikaris, Paris .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2243)
[44]   Bayesian pollution source identification via an inverse physics model [J].
Hwang, Youngdeok ;
Kim, Hang J. ;
Chang, Won ;
Yeo, Kyongmin ;
Kim, Yongku .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 134 :76-92
[45]   A Bayesian approach for wavenumber identification of metamaterial beams possessing variability [J].
Souza, Marcos R. ;
Beli, Danilo ;
Ferguson, Neil S. ;
Arruda, Jose Roberto de F. ;
Fabro, Adriano T. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 135
[46]   Bayesian structural identification using Gaussian Process discrepancy models [J].
Kosikova, Antonina M. ;
Sedehi, Omid ;
Papadimitriou, Costas ;
Katafygiotis, Lambros S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
[47]   Comparison between Bayesian updating and approximate Bayesian computation for model identification of masonry towers through dynamic data [J].
Monchetti, Silvia ;
Viscardi, Cecilia ;
Betti, Michele ;
Clementi, Francesco .
BULLETIN OF EARTHQUAKE ENGINEERING, 2024, 22 (07) :3491-3509
[48]   Response-Surface-Based Bayesian Inference for Power System Dynamic Parameter Estimation [J].
Xu, Yijun ;
Huang, Can ;
Chen, Xiao ;
Mili, Lamine ;
Tong, Charles H. ;
Korkali, Mert ;
Min, Liang .
IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (06) :5899-5909
[49]   Augmented Sequential Bayesian Filtering for Parameter and Modeling Error Estimation of Linear Dynamic Systems [J].
Song, Mingming ;
Ebrahimian, Hamed ;
Moaveni, Babak .
MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2020, :163-165
[50]   Parameter estimation for reactive chromatography model by Bayesian inference and parallel sequential Monte Carlo [J].
Sugiyama, Hikari ;
Yamamoto, Yota ;
Suzuki, Kensuke ;
Yajima, Tomoyuki ;
Kawajiri, Yoshiaki .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 203 :378-390