BAYESIAN PARAMETER IDENTIFICATION IN PLASTICITY

被引:0
作者
Adeli, Ehsan [1 ]
Rosic, Bojana [1 ]
Matthies, Hermann G. [1 ]
Reinstaeler, Sven [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Sci Comp, Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Struct Anal, Braunschweig, Germany
来源
COMPUTATIONAL PLASTICITY XIV: FUNDAMENTALS AND APPLICATIONS | 2017年
关键词
Viscoplastic Model; Uncertainty Quantification; Probabilistic Inverse Approach; Polynomial Chaos; CONSTITUTIVE MODEL; INELASTIC FLOW;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To evaluate the cyclic behaviour under different loading conditions using the kinematic and isotropic hardening theory of steel a Chaboche visco-plastic material model is employed. The parameters of a constitutive model are usually identified by minimization of the distance between model response and experimental data. However, measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article the Choboche model is used and a stochastic simulation technique is applied to generate artificial data which exhibit the same stochastic behaviour as experimental data. Then the model parameters are identified by applying a variaty of Bayes's theorem. Identified parameters are compared with the true parameters in the simulation and the efficiency of the identification method is discussed.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 50 条
[31]   Inverse Parameter Identification for Hyperelastic Model of a Polyurea [J].
Xiao, Yihua ;
Tang, Ziqiang ;
Hong, Xiangfu .
POLYMERS, 2021, 13 (14)
[32]   Using state parameter to improve numerical prediction of a generalized plasticity constitutive model [J].
Sadeghian, Somaye ;
Namin, Manouchehr Latifi .
COMPUTERS & GEOSCIENCES, 2013, 51 :255-268
[33]   Bayesian frequentist bounds for machine learning and system identification [J].
Baggio, Giacomo ;
Care, Algo ;
Scampicchio, Anna ;
Pillonetto, Gianluigi .
AUTOMATICA, 2022, 146
[34]   Hierarchical Bayesian Model Updating for Probabilistic Damage Identification [J].
Behmanesh, Iman ;
Moaveni, Babak ;
Lombaert, Geert ;
Papadimitriou, Costas .
MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2015, :55-66
[35]   Fast Bayesian modal identification with known seismic excitations [J].
Wang, Peixiang ;
Li, Binbin ;
Zhang, Fengliang ;
Chen, Xiaoyu ;
Ni, Yanchun .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (11) :3439-3468
[36]   Iterative improvement of Bayesian parameter estimates for an engine model by means of experimental design [J].
Mosbach, Sebastian ;
Braumann, Andreas ;
Man, Peter L. W. ;
Kastner, Catharine A. ;
Brownbridge, George P. E. ;
Kraft, Markus .
COMBUSTION AND FLAME, 2012, 159 (03) :1303-1313
[37]   Bayesian model selection and parameter estimation for fatigue damage progression models in composites [J].
Chiachio, J. ;
Chiachio, M. ;
Saxena, A. ;
Sankararaman, S. ;
Rus, G. ;
Goebel, K. .
INTERNATIONAL JOURNAL OF FATIGUE, 2015, 70 :361-373
[38]   Parameter identification for an advanced material model for intact rock [J].
Unteregger, D. ;
Hofstetter, G. ;
Haltmeier, M. ;
Ostermann, A. .
NUMERICAL METHODS IN GEOTECHNICAL ENGINEERING, VOL 1, 2014, :215-220
[39]   Parameter identification for viscoelastic damage constitutive model of PBX [J].
Gao, J. (gaojun.nuaa@foxmail.com), 2013, Tsinghua University (30) :299-304
[40]   Mohr-Coulomb plasticity for sands incorporating density effects without parameter calibration [J].
Choo, Jinhyun .
INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2018, 42 (18) :2193-2206