BAYESIAN PARAMETER IDENTIFICATION IN PLASTICITY

被引:0
|
作者
Adeli, Ehsan [1 ]
Rosic, Bojana [1 ]
Matthies, Hermann G. [1 ]
Reinstaeler, Sven [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Sci Comp, Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Struct Anal, Braunschweig, Germany
来源
COMPUTATIONAL PLASTICITY XIV: FUNDAMENTALS AND APPLICATIONS | 2017年
关键词
Viscoplastic Model; Uncertainty Quantification; Probabilistic Inverse Approach; Polynomial Chaos; CONSTITUTIVE MODEL; INELASTIC FLOW;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To evaluate the cyclic behaviour under different loading conditions using the kinematic and isotropic hardening theory of steel a Chaboche visco-plastic material model is employed. The parameters of a constitutive model are usually identified by minimization of the distance between model response and experimental data. However, measurement errors and differences in the specimens lead to deviations in the determined parameters. In this article the Choboche model is used and a stochastic simulation technique is applied to generate artificial data which exhibit the same stochastic behaviour as experimental data. Then the model parameters are identified by applying a variaty of Bayes's theorem. Identified parameters are compared with the true parameters in the simulation and the efficiency of the identification method is discussed.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 50 条
  • [1] EFFICIENT BAYESIAN PARAMETER IDENTIFICATION
    Janouchova, E.
    Kucerova, A.
    Syskora, J.
    ENGINEERING MECHANICS 2014, 2014, : 264 - 267
  • [2] Structure and parameter identification for Bayesian Hammerstein system
    Zhang, Limin
    Hua, Changchun
    Guan, Xinping
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1847 - 1861
  • [3] Novel parameter priors for Bayesian signal identification
    Quinn, A
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3909 - 3912
  • [4] Structure and parameter identification for Bayesian Hammerstein system
    Limin Zhang
    Changchun Hua
    Xinping Guan
    Nonlinear Dynamics, 2015, 79 : 1847 - 1861
  • [5] Bayesian Filters for Parameter Identification of Duffing Oscillator
    Mishra, Vikas Kumar
    Radhakrishnan, Rahul
    Singh, Abhinoy Kumar
    Bhaumik, Shovan
    IFAC PAPERSONLINE, 2018, 51 (01): : 425 - 430
  • [6] A Method for Crystal Plasticity Model Parameter Calibration Based on Bayesian Optimization
    Sun, Xiaochuan
    Wang, Huamiao
    MAGNESIUM TECHNOLOGY 2022, 2022, : 105 - 111
  • [7] Parameter identification for a suction-dependent plasticity model
    Simoni, L
    Schrefler, BA
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2001, 25 (03) : 273 - 288
  • [8] Material parameter identification for large deformation plasticity models
    Toropov, VV
    Yoshida, F
    Van Der Giessen, E
    MATERIAL IDENTIFICATION USING MIXED NUMERICAL EXPERIMENTAL METHODS, 1997, : 81 - 92
  • [9] Parameter identification problem in one-parameter plasticity model for fibrous composites
    Wang, J.
    Xiao, Y.
    Kawai, M.
    ADVANCED COMPOSITE MATERIALS, 2019, 28 : 29 - 51
  • [10] Bayesian parameter identification of hysteretic behavior of composite walls
    Liu, Pei
    Au, Siu-Kui
    PROBABILISTIC ENGINEERING MECHANICS, 2013, 34 : 101 - 109