Controlling the structural properties of pure and aluminum doped zinc oxide nanoparticles by annealing

被引:21
作者
Narjis, A. [1 ]
El Aakib, H. [1 ]
Boukendil, M. [2 ]
El Hasnaoui, M. [3 ]
Nkhaili, L. [1 ]
Aberkouks, A. [4 ]
Outzourhit, A. [1 ]
机构
[1] Cadi Ayyad Univ, Fac Sci Semlalia, Phys Dept, Nanomat Energy & Environm Lab, POB 2390, Marrakech 40000, Morocco
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, LMFE, BP 2390, Marrakech, Morocco
[3] Ibn Tofail Univ, Fac Sci, Phys Dept, LASTID Lab, BP 133, Kenitra 14000, Morocco
[4] Cadi Ayyad Univ, Dept Chim, Lab Chim Coordinat & Catalyse, Fac Sci Semlalia, BP 2390, Marrakech 40001, Morocco
关键词
Aluminum doped Zinc oxide; Annealing; Crystallite size; Sol-gel; ZNO NANOPARTICLES; ELECTRONIC-STRUCTURE; CRYSTALLITE SIZE; BAND-GAP; TEMPERATURE; FILMS; DEPENDENCE;
D O I
10.1016/j.jksus.2019.10.004
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) nanoparticles were synthesized by a typical sol-gel method. The effect of the doping and the annealing temperatures were studied. The dopant percentage of 4% was fixed. XRD patterns showed that ZnO and Al doped ZnO nanoparticles exhibit good crystallization. The crystallite size was shown to decrease by doping and increase by increasing the annealing temperature in the range 350-650 degrees C. The incorporation of aluminum atoms in the ZnO lattice was confirmed by performing the FTIR spectra. However, the EDX analysis shows that only some aluminum atoms were incorporated. (C) 2019 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:1074 / 1080
页数:7
相关论文
共 44 条
  • [1] Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant
    Aberkouks, Abderrazak
    Abdelkader Mekkaoui, Ayoub
    Boualy, Brahim
    El Houssame, Soufiane
    Ait Ali, Mustapha
    El Firdoussi, Larbi
    [J]. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2018, 2018
  • [2] Structural and Morphological Properties of Al doped ZnO Nanoparticles
    Akdag, A.
    Budak, H. F.
    Yilmaz, M.
    Efe, A.
    Buyukaydin, M.
    Can, M.
    Turgut, G.
    Sonmez, E.
    [J]. INTERNATIONAL PHYSICS CONFERENCE AT THE ANATOLIAN PEAK (IPCAP2016), 2016, 707
  • [3] The effect of Al-doping on ZnO nanoparticles applied as catalyst support
    Behrens, Malte
    Lolli, Giulio
    Muratova, Nelli
    Kasatkin, Igor
    Haevecker, Michael
    d'Alnoncourt, Raoul Naumann
    Storcheva, Oksana
    Koehler, Klaus
    Muhler, Martin
    Schloegl, Robert
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (05) : 1374 - 1381
  • [4] Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications
    Bhosle, V.
    Prater, J. T.
    Yang, Fan
    Burk, D.
    Forrest, S. R.
    Narayan, J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (02)
  • [5] Binner J, 2008, J MICROWAVE POWER EE, V42, P47
  • [6] Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering
    Cheng, H.
    Xu, X. J.
    Hng, H. H.
    Ma, J.
    [J]. CERAMICS INTERNATIONAL, 2009, 35 (08) : 3067 - 3072
  • [7] Persistent n-type photoconductivity in p-type ZnO
    Claflin, B
    Look, DC
    Park, SJ
    Cantwell, G
    [J]. JOURNAL OF CRYSTAL GROWTH, 2006, 287 (01) : 16 - 22
  • [8] Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites
    Esthappan, Saisy K.
    Nair, Ajalesh B.
    Joseph, Rani
    [J]. COMPOSITES PART B-ENGINEERING, 2015, 69 : 145 - 153
  • [9] Nanostructured ZnO chemical gas sensors
    Galstyan, Vardan
    Comini, Elisabetta
    Baratto, Camilla
    Faglia, Guido
    Sberveglieri, Giorgio
    [J]. CERAMICS INTERNATIONAL, 2015, 41 (10) : 14239 - 14244
  • [10] Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method
    Goswami, Monalisha
    Adhikary, Nirab C.
    Bhattacharjee, Suparna
    [J]. OPTIK, 2018, 158 : 1006 - 1015