Butler-Volmer-Monod model for describing bio-anode polarization curves

被引:114
作者
Hamelers, Hubertus V. M. [1 ]
ter Heijne, Annemiek [1 ,2 ]
Stein, Nienke [1 ,2 ]
Rozendal, Rene A. [3 ]
Buisman, Cees J. N. [1 ,2 ]
机构
[1] Wageningen Univ, Subdept Environm Technol, NL-6700 EV Wageningen, Netherlands
[2] Agora, Ctr Excellence Sustainable Water Technol, Wetsus, NL-8900 CC Leeuwarden, Netherlands
[3] Univ Queensland, Adv Water Management Ctr, St Lucia, Qld 4072, Australia
关键词
Bioelectrochemical system; Microbial Fuel Cell; Anode; Butler-Volmer; Monod; MICROBIAL FUEL-CELLS; RESPIRING BACTERIA; ELECTRON-TRANSFER; BIOFILM ANODE; PERFORMANCE; PROTEINS;
D O I
10.1016/j.biortech.2010.06.156
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A kinetic model of the bio-anode was developed based on a simple representation of the underlying biochemical conversions as described by enzyme kinetics, and electron transfer reactions as described by the Butler-Volmer electron transfer kinetics. This Butler-Volmer-Monod model was well able to describe the measured bio-anode polarization curves. The Butler-Volmer-Monod model was compared to the Nernst-Monod model described the experimental data significantly better. The Butler-Volmer-Monod model has the Nernst-Monod model as its full electrochemically reversible limit. Contrary to the Nernst-Monod model, the Butler-Volmer-Monod model predicts zero current at equilibrium potential. Besides, the Butler-Volmer-Monod model predicts that the apparent Monod constant is dependent on anode potential, which was supported by experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:381 / 387
页数:7
相关论文
共 20 条
[1]   The anode potential regulates bacterial activity in microbial fuel cells [J].
Aelterman, Peter ;
Freguia, Stefano ;
Keller, Jurg ;
Verstraete, Willy ;
Rabaey, Korneel .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (03) :409-418
[2]   VOLTAMMETRIC STUDIES OF REDOX-ACTIVE CENTERS IN METALLOPROTEINS ADSORBED ON ELECTRODES [J].
ARMSTRONG, FA ;
BUTT, JN ;
SUCHETA, A .
METALLOBIOCHEMISTRY, PT D, 1993, 227 :479-500
[3]  
Bard AllenJ., 2001, Fundamentals and applications, V2nd
[5]   Effect of electrode potential on electrode-reducing microbiota [J].
Finkelstein, David A. ;
Tender, Leonard M. ;
Zeikus, J. Gregory .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (22) :6990-6995
[6]   New applications and performance of bioelectrochemical systems [J].
Hamelers, Hubertus V. M. ;
Ter Heijne, Annemiek ;
Sleutels, Tom H. J. A. ;
Jeremiasse, Adriaan W. ;
Strik, David P. B. T. B. ;
Buisman, Cees J. N. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (06) :1673-1685
[7]   Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes [J].
Heering, HA ;
Hirst, J ;
Armstrong, FA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (35) :6889-6902
[8]   Direct electron transfer of redox proteins on a Nafion-cysteine modified gold electrode [J].
Hong, Jun ;
Ghourchian, Hedayatollah ;
Moosavi-Movahedi, Ali Akbar .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (10) :1572-1576
[9]   Microbial fuel cells: Methodology and technology [J].
Logan, Bruce E. ;
Hamelers, Bert ;
Rozendal, Rene A. ;
Schrorder, Uwe ;
Keller, Jurg ;
Freguia, Stefano ;
Aelterman, Peter ;
Verstraete, Willy ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) :5181-5192
[10]   Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter [J].
Logan, Bruce E. ;
Call, Douglas ;
Cheng, Shaoan ;
Hamelers, Hubertus V. M. ;
Sleutels, Tom H. J. A. ;
Jeremiasse, Adriaan W. ;
Rozendal, Rene A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (23) :8630-8640