Molecular insights on confined water in the nanochannels of self-assembled ionic liquid crystal

被引:52
作者
Ishii, Yoshiki [1 ,2 ]
Matubayasi, Nobuyuki [2 ,3 ]
Watanabe, Go [4 ]
Kato, Takashi [5 ]
Washizu, Hitoshi [1 ,2 ]
机构
[1] Univ Hyogo, Grad Sch Informat Sci, Chuo Ku, 7-1-28 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
[2] Kyoto Univ, Elements Strategy Initiat Catalysts & Batteries, Kyoto 6158520, Japan
[3] Osaka Univ, Grad Sch Engn Sci, Div Chem Engn, Toyonaka, Osaka 5608531, Japan
[4] Kitasato Univ, Sch Sci, Dept Phys, Sagamihara, Kanagawa 2520373, Japan
[5] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Bunkyo Ku, Tokyo 1138656, Japan
基金
日本学术振兴会;
关键词
FORCE-FIELD; POLYELECTROLYTE MEMBRANE; ENERGY-REPRESENTATION; DYNAMICS SIMULATIONS; COMPUTER-SIMULATION; ATOMIC CHARGES; PHASE; ORGANIZATION; COMBINATION; TRANSITION;
D O I
10.1126/sciadv.abf0669
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Self-assembled ionic liquid crystals can transport water and ions via the periodic nanochannels, and these materials are promising candidates as water treatment membranes. Molecular insights on the water transport process are, however, less investigated because of computational difficulties of ionic soft matters and the self-assembly. Here we report specific behavior of water molecules in the nanochannels by using the self-consistent modeling combining density functional theory and molecular dynamics and the large-scale molecular dynamics calculation. The simulations clearly provide the one- dimensional (1D) and 3D-interconnected nanochannels of self-assembled columnar and bicontinuous structures, respectively, with the precise mesoscale order observed by x-ray diffraction measurement. Water molecules are then confined inside the nanochannels with the formation of hydrogen bonding network. The quantitative analyses of free energetics and anisotropic diffusivity reveal that, the mesoscale geometry of 1D nanodomain profits the nature of water transport via advantages of dissolution and diffusion mechanisms inside the ionic nanochannels.
引用
收藏
页数:14
相关论文
共 70 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   Direct Evidence of Confined Water in Room-Temperature Ionic Liquids by Complementary Use of Small-Angle X-ray and Neutron Scattering [J].
Abe, Hiroshi ;
Takekiyo, Takahiro ;
Shigemi, Machiko ;
Yoshimura, Yukihiro ;
Tsuge, Shu ;
Hanasaki, Tomonori ;
Ohishi, Kazuki ;
Takata, Shinichi ;
Suzuki, Jun-ichi .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07) :1175-1180
[3]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[4]   Molecular Simulation of Water in Carbon Nanotubes [J].
Alexiadis, Alessio ;
Kassinos, Stavros .
CHEMICAL REVIEWS, 2008, 108 (12) :5014-5034
[5]   Molecular simulation of liquid crystals [J].
Allen, Michael P. .
MOLECULAR PHYSICS, 2019, 117 (18) :2391-2417
[6]   Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields [J].
Bedrov, Dmitry ;
Piquemal, Jean-Philip ;
Borodin, Oleg ;
MacKerell, Alexander D., Jr. ;
Roux, Benoit ;
Schroeder, Christian .
CHEMICAL REVIEWS, 2019, 119 (13) :7940-7995
[7]  
BLOCHL PE, 1995, J CHEM PHYS, V103, P7422, DOI 10.1063/1.470314
[8]   Functional Organic Materials Based on Polymerized Liquid-Crystal Monomers: Supramolecular Hydrogen-Bonded Systems [J].
Broer, Dirk J. ;
Bastiaansen, Cees M. W. ;
Debije, Michael G. ;
Schenning, Albertus P. H. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (29) :7102-7109
[9]   First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4] [J].
Choi, Eunsong ;
McDaniel, Jesse G. ;
Schmidt, J. R. ;
Yethiraj, Arun .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (15) :2670-2674
[10]   Statistical Inference of Transport Mechanisms and Long Time Scale Behavior from Time Series of Solute Trajectories in Nanostructured Membranes [J].
Coscia, Benjamin J. ;
Calderon, Christopher P. ;
Shirts, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (37) :8110-8123