Erdos distance problem in vector spaces over finite fields

被引:125
作者
Iosevich, A. [1 ]
Rudnev, M.
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
D O I
10.1090/S0002-9947-07-04265-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Erdos/Falconer distance problem in vector spaces over finite fields. Let F-q be a finite field with q elements and take E subset of F-q(d), d >= 2. We develop a Fourier analytic machinery, analogous to that developed by Mattila in the continuous case, for the study of distance sets in F-q(d) to provide estimates for minimum cardinality of the distance set Delta(E) in terms of the cardinality of E. Bounds for Gauss and Kloosterman sums play an important role in the proof.
引用
收藏
页码:6127 / 6142
页数:16
相关论文
共 24 条
[1]  
[Anonymous], 1988, ANN MATH STUD
[2]  
[Anonymous], 2003, LECT NOTES
[3]   A sum-product estimate in finite fields, and applications [J].
Bourgain, J ;
Katz, N ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :27-57
[4]   HAUSDORFF DIMENSION AND DISTANCE SETS [J].
Bourgain, Jean .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 87 (1-3) :193-201
[5]  
Erd??s P., 1946, AM MATH MONTHLY, V53, P248, DOI [10.1080/00029890.1946.11991674, DOI 10.1080/00029890.1946.11991674]
[6]   ON THE HAUSDORFF DIMENSIONS OF DISTANCE SETS [J].
FALCONER, KJ .
MATHEMATIKA, 1985, 32 (64) :206-212
[7]  
IOSEVICH A, 2006, DISTANCES MEASURES W
[8]  
Iwaniec H., 2004, C PUBLICATIONS, V53
[9]  
Katz N.H., 2004, CONT MATH, V342, P119, DOI DOI 10.1090/CONM/342/06136.MR2065258
[10]  
Landau Edmund, 1969, VORLESUNGEN ZAHLENTH