Enhancing sepsis management through machine learning techniques: A review

被引:1
|
作者
Ocampo-Quintero, N. [1 ]
Vidal-Cortes, P. [2 ]
del Rio Carbajo, L. [2 ]
Fdez-Riverola, F. [1 ,3 ,4 ]
Reboiro-Jato, M. [1 ,3 ,4 ]
Glez-Pena, D. [1 ,3 ,4 ]
机构
[1] Univ Vigo, ESEI Escuela Super Ingn Informat, Orense, Spain
[2] Complexo Hosp Univ Ourense, Intens Care Unit, Orense, Spain
[3] Univ Vigo, CINBIO Ctr Invest Biomed, Vigo, Spain
[4] SERGAS UVIGO, Galicia Sur Hlth Res Inst IIS Galicia Sur, SING Res Grp, Vigo, Spain
关键词
Sepsis; Clinical decision support systems; Machine learning; Artificial intelligence; INTENSIVE-CARE-UNIT; CLINICAL-OUTCOMES; VITAL SIGNS; BIG DATA; PREDICTION; DEFINITIONS; MORTALITY; IMPACT; VALIDATION; GUIDELINES;
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Sepsis is a major public health problem and a leading cause of death in the world, where delay in the beginning of treatment, along with clinical guidelines non-adherence have been proved to be associated with higher mortality. Machine Learning is increasingly being adopted in developing innovative Clinical Decision Support Systems in many areas of medicine, showing a great potential for automatic prediction of diverse patient conditions, as well as assistance in clinical decision making. In this context, this work conducts a narrative review to provide an overview of how specific Machine Learning techniques can be used to improve sepsis management, discussing the main tasks addressed, the most popular methods and techniques, as management, discussing the main tasks addressed, the most popular methods and techniques, as well as the obtained results, in terms of both intelligent system accuracy and clinical outcomes improvement. (C) 2020 Elsevier Espana, S.L.U. y SEMICYUC. All rights reserved.
引用
收藏
页码:140 / 156
页数:17
相关论文
共 50 条
  • [31] Sepsis biomarkers and diagnostic tools with a focus on machine learning
    Komorowski, Matthieu
    Green, Ashleigh
    Tatham, Kate C.
    Seymour, Christopher
    Antcliffe, David
    EBIOMEDICINE, 2022, 86
  • [32] Machine-learning-derived sepsis bundle of care
    Kalimouttou, Alexandre
    Lerner, Ivan
    Cheurfa, Cherifa
    Jannot, Anne-Sophie
    Pirracchio, Romain
    INTENSIVE CARE MEDICINE, 2023, 49 (01) : 26 - 36
  • [33] Air Temperature Forecasting Using Machine Learning Techniques: A Review
    Cifuentes, Jenny
    Marulanda, Geovanny
    Bello, Antonio
    Reneses, Javier
    ENERGIES, 2020, 13 (16)
  • [34] Machine Learning and Antibiotic Management
    Maviglia, Riccardo
    Michi, Teresa
    Passaro, Davide
    Raggi, Valeria
    Bocci, Maria Grazia
    Piervincenzi, Edoardo
    Mercurio, Giovanna
    Lucente, Monica
    Murri, Rita
    ANTIBIOTICS-BASEL, 2022, 11 (03):
  • [35] Early detection of sepsis using machine learning algorithms: a systematic review and network meta-analysis
    Yadgarov, Mikhail Ya
    Landoni, Giovanni
    Berikashvili, Levan B.
    Polyakov, Petr A.
    Kadantseva, Kristina K.
    Smirnova, Anastasia V.
    Kuznetsov, Ivan V.
    Shemetova, Maria M.
    Yakovlev, Alexey A.
    Likhvantsev, Valery V.
    FRONTIERS IN MEDICINE, 2024, 11
  • [36] Enhancing Heart Disease Prediction Accuracy through Machine Learning Techniques and Optimization
    Chandrasekhar, Nadikatla
    Peddakrishna, Samineni
    PROCESSES, 2023, 11 (04)
  • [37] Android Malware Detection through Machine Learning Techniques: A Review
    Abikoye, Oluwakemi Christiana
    Gyunka, Benjamin Aruwa
    Akande, Oluwatobi Noah
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (02) : 14 - 30
  • [38] Enhancing Air Quality Forecasting Using Machine Learning Techniques
    Shahbazi, Zeinab
    Shahbazi, Zahra
    Nowaczyk, Slawomir
    IEEE ACCESS, 2024, 12 : 197290 - 197299
  • [39] Failures Forecast in Monitoring Datacenter Infrastructure Through Machine Learning Techniques: A Systematic Review
    Lopes Neto, Walter
    Barroca Filho, Itamir de Morais
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IX, 2021, 12957 : 27 - 42
  • [40] Deployment of machine learning algorithms to predict sepsis: systematic review and application of the SALIENT clinical AI implementation framework
    van der Vegt, Anton H.
    Scott, Ian A.
    Dermawan, Krishna
    Schnetler, Rudolf J.
    Kalke, Vikrant R.
    Lane, Paul J.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2023, 30 (07) : 1349 - 1361