共 51 条
Nitrogen-Enriched Mesoporous Carbon Spheres as Efficient Anode Material for Long-Cycle Li/Na-Ion Batteries
被引:10
作者:
Ali, Shamshad
[1
,2
]
Waqas, Muhammad
[3
]
Thaheem, Imdadullah
[4
]
Hussain, Ayaz
[1
]
Soomro, Afaque Manzoor
[3
,5
]
Bhutto, Zuhaibuddin
[6
]
Muhammad, Wazir
[1
]
Shah, Syed Ali Raza
[7
]
Shah, Jalal
[6
]
机构:
[1] Balochistan Univ Engn & Technol, Dept Elect Engn, Khuzdar 89100, Pakistan
[2] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China
[3] Sukkur IBA Univ, Dept Elect Engn, Sukkur 65200, Pakistan
[4] Benazir Bhutto Shaheed Univ Technol & Skill Dev, Dept Mech Engn Technol, Khairpur Mirs 66020, Sindh, Pakistan
[5] Jeju Natl Univ, Dept Mechatron Engn, Jeju 63243, South Korea
[6] Balochistan Univ Engn & Technol, Dept Comp Syst Engn, Khuzdar 89100, Pakistan
[7] Balochistan Univ Engn & Technol, Dept Mech Engn, Khuzdar 89100, Pakistan
来源:
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE
|
2022年
/
219卷
/
08期
基金:
新加坡国家研究基金会;
关键词:
carbon spheres;
lithium-ion batteries;
nitrogen-doped porous spheres;
sodium-ion batteries;
xanthan;
ENHANCED LITHIUM STORAGE;
GRAPHENE NANOSHEETS;
ULTRAHIGH-CAPACITY;
PERFORMANCE;
NANOSPHERES;
FABRICATION;
NANOFIBERS;
CHALLENGES;
STABILITY;
NANOTUBES;
D O I:
10.1002/pssa.202100714
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Nitrogen doping with carbon material substantially enhances the electrochemical properties in lithium and sodium batteries. However, direct treating at high temperature fails to create high nitrogen content, thus limiting the morphological as well as electrochemical performances. Herein, a hydrophilic material xanthan and acid-treated melamine are doped by a dual process of hydrothermal and carbonization, enabling high nitrogen content (28%) carbon spheres. The highly defected nanosphere structures (I-D/I-G = 1.14) enable the high specific surface area of 388 m(2) g(-1), which facilitates a large number of lithium/sodium ions and gives rise to remarkable electrochemical performances. When applied as an anode, the nitrogen-doped porous sphere xanthan (NPS-XAN) delivers a superior discharge capacity of 390 mAh g(-1) after 1000 cycles at a current density of 1 A g(-1) for lithium anode and maintains a discharge capacity of 262 mAh g(-1) after 2800 cycles at 1 A g(-1) for sodium anode. This work signifies superior capacity anodes for Li/Na-ion batteries and contributes to the long-life cycling energy application.
引用
收藏
页数:7
相关论文