The large-scale correlations of multicell densities and profiles: implications for cosmic variance estimates

被引:16
作者
Codis, Sandrine [1 ,2 ,3 ]
Bernardeau, Francis [2 ,3 ,4 ,5 ]
Pichon, Christophe [2 ,3 ,6 ]
机构
[1] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada
[2] Univ Paris 06, Sorbonne Univ, 98 Bis Bd Arago, F-75014 Paris, France
[3] Inst Astrophys Paris, CNRS, UMR 7095, 98 Bis Bd Arago, F-75014 Paris, France
[4] CNRS, F-91191 Gif Sur Yvette, France
[5] CEA, UMR 3681, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[6] KIAS, 85 Hoegiro, Seoul 02455, South Korea
关键词
methods: analytical; methods: numerical; cosmology: theory; large-scale structure of Universe; STATISTICS; EVOLUTION; BIAS; UNIVERSE; FIELDS; SPACE; PEAKS; BISPECTRUM; SIMULATION; COUNTS;
D O I
10.1093/mnras/stw1103
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact 'one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.
引用
收藏
页码:1598 / 1613
页数:16
相关论文
共 57 条
[1]   The first data release of the Sloan Digital Sky Survey [J].
Abazajian, K ;
Adelman-McCarthy, JK ;
Agüeros, MA ;
Allam, SS ;
Anderson, SF ;
Annis, J ;
Bahcall, NA ;
Baldry, IK ;
Bastian, S ;
Berlind, A ;
Bernardi, M ;
Blanton, MR ;
Blythe, N ;
Bochanski, JJ ;
Boroski, WN ;
Brewington, H ;
Briggs, JW ;
Brinkmann, J ;
Brunner, RJ ;
Budavári, T ;
Carey, LN ;
Carr, MA ;
Castander, FJ ;
Chiu, K ;
Collinge, MJ ;
Connolly, AJ ;
Covey, KR ;
Csabai, I ;
Dalcanton, JJ ;
Dodelson, S ;
Doi, M ;
Dong, F ;
Eisenstein, DJ ;
Evans, ML ;
Fan, XH ;
Feldman, PD ;
Finkbeiner, DP ;
Friedman, SD ;
Frieman, JA ;
Fukugita, M ;
Gal, RR ;
Gillespie, B ;
Glazebrook, K ;
Gonzalez, CF ;
Gray, J ;
Grebel, EK ;
Grodnicki, L ;
Gunn, JE ;
Gurbani, VK ;
Hall, PB .
ASTRONOMICAL JOURNAL, 2003, 126 (04) :2081-2086
[2]  
Akhiezer NI., 1965, CLASSICAL MOMENT PRO
[3]   Peak exclusion, stochasticity and convergence of perturbative bias expansions in 1+1 gravity [J].
Baldauf, Tobias ;
Codis, Sandrine ;
Desjacques, Vincent ;
Pichon, Christophe .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (04) :3985-4000
[4]   Evidence for quadratic tidal tensor bias from the halo bispectrum [J].
Baldauf, Tobias ;
Seljak, Uros ;
Desjacques, Vincent ;
McDonald, Patrick .
PHYSICAL REVIEW D, 2012, 86 (08)
[5]  
BALIAN R, 1989, ASTRON ASTROPHYS, V220, P1
[6]   THE STATISTICS OF PEAKS OF GAUSSIAN RANDOM-FIELDS [J].
BARDEEN, JM ;
BOND, JR ;
KAISER, N ;
SZALAY, AS .
ASTROPHYSICAL JOURNAL, 1986, 304 (01) :15-61
[7]  
BAUGH CM, 1995, MON NOT R ASTRON SOC, V274, P1049
[8]   THE QUASI-GAUSSIAN DENSITY-VELOCITY RELATIONSHIP [J].
BERNARDEAU, F .
ASTROPHYSICAL JOURNAL, 1992, 390 (02) :L61-L64
[9]   Large-scale structure of the Universe and cosmological perturbation theory [J].
Bernardeau, F ;
Colombi, S ;
Gaztañaga, E ;
Scoccimarro, R .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 367 (1-3) :1-248
[10]  
Bernardeau F, 1996, ASTRON ASTROPHYS, V312, P11