Application of deep machine learning for the radiographic diagnosis of periodontitis

被引:31
作者
Chang, Jennifer [1 ]
Chang, Ming-Feng [2 ,3 ]
Angelov, Nikola [1 ]
Hsu, Chih-Yu [2 ]
Meng, Hsiu-Wan [1 ]
Sheng, Sally [1 ]
Glick, Aaron [4 ]
Chang, Kearny [1 ]
He, Yun-Ru [2 ]
Lin, Yi-Bing [2 ,3 ]
Wang, Bing-Yan [1 ]
Ayilavarapu, Srinivas [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Dent, Dept Periodont & Dent Hyg, Houston, TX 77030 USA
[2] Natl Yangming Chiaotung Univ, Inst Computat Intelligence, Taipei, Taiwan
[3] Natl Yangming Chiaotung Univ, Dept Comp Sci, Taipei, Taiwan
[4] Univ Texas Hlth Sci Ctr Houston, Sch Dent, Dept Gen Practice & Dent Publ Hlth, Houston, TX 77030 USA
关键词
Periodontitis; Computer-assisted radiographic image interpretation; Artificial intelligence; Machine learning; Deep learning; ADAPTIVE HISTOGRAM EQUALIZATION; PERI-IMPLANT DISEASES; CONSENSUS REPORT; RELIABILITY; CLASSIFICATION; PREVALENCE; WORKSHOP; ADULTS;
D O I
10.1007/s00784-022-04617-4
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective Successful application of deep machine learning could reduce time-consuming and labor-intensive clinical work of calculating the amount of radiographic bone loss (RBL) in diagnosing and treatment planning for periodontitis. This study aimed to test the accuracy of RBL classification by machine learning. Materials and methods A total of 236 patients with standardized full mouth radiographs were included. Each tooth from the periapical films was evaluated by three calibrated periodontists for categorization of RBL and radiographic defect morphology. Each image was pre-processed and augmented to ensure proper data balancing without data pollution, then a novel multitasking InceptionV3 model was applied. Results The model demonstrated an average accuracy of 0.87 +/- 0.01 in the categorization of mild (< 15%) or severe (>= 15%) bone loss with fivefold cross-validation. Sensitivity, specificity, positive predictive, and negative predictive values of the model were 0.86 +/- 0.03, 0.88 +/- 0.03, 0.88 +/- 0.03, and 0.86 +/- 0.02, respectively. Conclusions Application of deep machine learning for the detection of alveolar bone loss yielded promising results in this study. Additional data would be beneficial to enhance model construction and enable better machine learning performance for clinical implementation. Clinical relevance Higher accuracy of radiographic bone loss classification by machine learning can be achieved with more clinical data and proper model construction for valuable clinical application.
引用
收藏
页码:6629 / 6637
页数:9
相关论文
共 36 条
[1]   A REVIEW OF THE RELIABILITY OF RADIOGRAPHIC MEASUREMENTS IN ESTIMATING ALVEOLAR BONE CHANGES [J].
BENN, DK .
JOURNAL OF CLINICAL PERIODONTOLOGY, 1990, 17 (01) :14-21
[2]  
Borgnakke WS, 2013, J CLIN PERIODONTOL, V40, pS135, DOI [10.1111/jcpe.12080, 10.1902/jop.2013.1340013]
[3]  
BURMAN P, 1989, BIOMETRIKA, V76, P503, DOI 10.2307/2336116
[4]   A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification [J].
Caton, Jack G. ;
Armitage, Gary ;
Berglundh, Tord ;
Chapple, Iain L. C. ;
Jepsen, Soren ;
Kornman, Kenneth S. ;
Mealey, Brian L. ;
Papapanou, Panos N. ;
Sanz, Mariano ;
Tonetti, Maurizio S. .
JOURNAL OF PERIODONTOLOGY, 2018, 89 :S1-S8
[5]   Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis [J].
Chang, Hyuk-Joon ;
Lee, Sang-Jeong ;
Yong, Tae-Hoon ;
Shin, Nan-Young ;
Jang, Bong-Geun ;
Kim, Jo-Eun ;
Huh, Kyung-Hoe ;
Lee, Sam-Sun ;
Heo, Min-Suk ;
Choi, Soon-Chul ;
Kim, Tae-Il ;
Yi, Won-Jin .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions [J].
Chapple, Iain L. C. ;
Mealey, Brian L. ;
Van Dyke, Thomas E. ;
Bartold, P. Mark ;
Dommisch, Henrik ;
Eickholz, Peter ;
Geisinger, Maria L. ;
Genco, Robert J. ;
Glogauer, Michael ;
Goldstein, Moshe ;
Griffin, Terrence J. ;
Holmstrup, Palle ;
Johnson, Georgia K. ;
Kapila, Yvonne ;
Lang, Niklaus P. ;
Meyle, Joerg ;
Murakami, Shinya ;
Plemons, Jacqueline ;
Romito, Giuseppe A. ;
Shapira, Lior ;
Tatakis, Dimitris N. ;
Teughels, Wim ;
Trombelli, Leonardo ;
Walter, Clemens ;
Wimmer, Gernot ;
Xenoudi, Pinelopi ;
Yoshie, Hiromasa .
JOURNAL OF PERIODONTOLOGY, 2018, 89 :S74-S84
[7]  
Chapple ILC, 2013, J CLIN PERIODONTOL, V40, pS106, DOI [10.1902/jop.2013.1340011, 10.1111/jcpe.12077]
[8]   Prevalence of Periodontitis in Adults in the United States: 2009 and 2010 [J].
Eke, P. I. ;
Dye, B. A. ;
Wei, L. ;
Thornton-Evans, G. O. ;
Genco, R. J. .
JOURNAL OF DENTAL RESEARCH, 2012, 91 (10) :914-920
[9]   Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012 [J].
Eke, Paul I. ;
Dye, Bruce A. ;
Wei, Liang ;
Slade, Gary D. ;
Thornton-Evans, Gina O. ;
Borgnakke, Wenche S. ;
Taylor, George W. ;
Page, Roy C. ;
Beck, James D. ;
Genco, Robert J. .
JOURNAL OF PERIODONTOLOGY, 2015, 86 (05) :611-622
[10]   RELIABILITY OF RADIOGRAPHICAL INTERPRETATIONS [J].
GELFAND, M ;
SUNDERMAN, EJ ;
GOLDMAN, M .
JOURNAL OF ENDODONTICS, 1983, 9 (02) :71-75